Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import random | |
| import torch | |
| from pathlib import Path | |
| from PIL import Image | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| from typing import Union, Sequence, Mapping, Any | |
| # Configuração inicial e diagnóstico CUDA | |
| print("Python version:", sys.version) | |
| print("Torch version:", torch.__version__) | |
| print("CUDA disponível:", torch.cuda.is_available()) | |
| print("Quantidade de GPUs:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("GPU atual:", torch.cuda.get_device_name(0)) | |
| # Adicionar o caminho da pasta ComfyUI ao sys.path | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| comfyui_path = os.path.join(current_dir, "ComfyUI") | |
| sys.path.append(comfyui_path) | |
| # Importar ComfyUI components | |
| sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "ComfyUI/comfy")) | |
| import comfy.diffusers_load | |
| import comfy.samplers | |
| import comfy.sample | |
| import comfy.sd | |
| import comfy.utils | |
| from comfy.cli_args import args | |
| import folder_paths | |
| # Importar nós do ComfyUI | |
| from nodes import CLIPTextEncode, VAEDecode, EmptyLatentImage, VAEEncode | |
| # Configuração de diretórios | |
| BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
| output_dir = os.path.join(BASE_DIR, "output") | |
| os.makedirs(output_dir, exist_ok=True) | |
| folder_paths.set_output_directory(output_dir) | |
| # Helper function | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| # Baixar modelos | |
| def download_models(): | |
| print("Baixando modelos...") | |
| models = [ | |
| ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"), | |
| ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"), | |
| ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"), | |
| ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"), | |
| ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/diffusion_models"), | |
| ("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision") | |
| ] | |
| for repo_id, filename, local_dir in models: | |
| try: | |
| os.makedirs(local_dir, exist_ok=True) | |
| print(f"Baixando {filename} de {repo_id}...") | |
| hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) | |
| except Exception as e: | |
| print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}") | |
| continue | |
| # Download models no início | |
| download_models() | |
| # Inicializar modelos | |
| print("Inicializando modelos...") | |
| with torch.inference_mode(): | |
| clip_text_encode = CLIPTextEncode() | |
| vae_decode = VAEDecode() | |
| vae_encode = VAEEncode() | |
| empty_latent = EmptyLatentImage() | |
| def generate_image(prompt, input_image, strength, progress=gr.Progress(track_tqdm=True)): | |
| try: | |
| with torch.inference_mode(): | |
| # Seu código de geração aqui | |
| pass | |
| except Exception as e: | |
| print(f"Erro ao gerar imagem: {str(e)}") | |
| return None | |
| # Interface Gradio | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Gerador de Imagens FLUX") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) | |
| input_image = gr.Image(label="Imagem de Entrada", type="filepath") | |
| strength = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Força") | |
| generate_btn = gr.Button("Gerar Imagem") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Imagem Gerada", type="filepath") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt_input, input_image, strength], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() |