big-thousand
init
699163a
raw
history blame
13.8 kB
import base64
import io
import re
import time
from datetime import date
from pathlib import Path
import gradio as gr
import requests
import torch
from PIL import Image
import modules.shared as shared
from modules.models import reload_model, unload_model
torch._C._jit_set_profiling_mode(False)
# parameters which can be customized in settings.json of webui
params = {
'address': 'http://127.0.0.1:7860',
'mode': 0, # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on)
'manage_VRAM': False,
'save_img': False,
'SD_model': 'NeverEndingDream', # not used right now
'prompt_prefix': '(Masterpiece:1.1), detailed, intricate, colorful',
'negative_prompt': '(worst quality, low quality:1.3)',
'width': 512,
'height': 512,
'denoising_strength': 0.61,
'restore_faces': False,
'enable_hr': False,
'hr_upscaler': 'ESRGAN_4x',
'hr_scale': '1.0',
'seed': -1,
'sampler_name': 'DDIM',
'steps': 32,
'cfg_scale': 7
}
def give_VRAM_priority(actor):
global shared, params
if actor == 'SD':
unload_model()
print("Requesting Auto1111 to re-load last checkpoint used...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
response.raise_for_status()
elif actor == 'LLM':
print("Requesting Auto1111 to vacate VRAM...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
response.raise_for_status()
reload_model()
elif actor == 'set':
print("VRAM mangement activated -- requesting Auto1111 to vacate VRAM...")
response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='')
response.raise_for_status()
elif actor == 'reset':
print("VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint")
response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='')
response.raise_for_status()
else:
raise RuntimeError(f'Managing VRAM: "{actor}" is not a known state!')
response.raise_for_status()
del response
if params['manage_VRAM']:
give_VRAM_priority('set')
samplers = ['DDIM', 'DPM++ 2M Karras'] # TODO: get the availible samplers with http://{address}}/sdapi/v1/samplers
SD_models = ['NeverEndingDream'] # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select
picture_response = False # specifies if the next model response should appear as a picture
def remove_surrounded_chars(string):
# this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR
# 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
return re.sub('\*[^\*]*?(\*|$)', '', string)
def triggers_are_in(string):
string = remove_surrounded_chars(string)
# regex searches for send|main|message|me (at the end of the word) followed by
# a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s),
# (?aims) are regex parser flags
return bool(re.search('(?aims)(send|mail|message|me)\\b.+?\\b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s?\\b', string))
def state_modifier(state):
if picture_response:
state['stream'] = False
return state
def input_modifier(string):
"""
This function is applied to your text inputs before
they are fed into the model.
"""
global params
if not params['mode'] == 1: # if not in immersive/interactive mode, do nothing
return string
if triggers_are_in(string): # if we're in it, check for trigger words
toggle_generation(True)
string = string.lower()
if "of" in string:
subject = string.split('of', 1)[1] # subdivide the string once by the first 'of' instance and get what's coming after it
string = "Please provide a detailed and vivid description of " + subject
else:
string = "Please provide a detailed description of your appearance, your surroundings and what you are doing right now"
return string
# Get and save the Stable Diffusion-generated picture
def get_SD_pictures(description):
global params
if params['manage_VRAM']:
give_VRAM_priority('SD')
payload = {
"prompt": params['prompt_prefix'] + description,
"seed": params['seed'],
"sampler_name": params['sampler_name'],
"enable_hr": params['enable_hr'],
"hr_scale": params['hr_scale'],
"hr_upscaler": params['hr_upscaler'],
"denoising_strength": params['denoising_strength'],
"steps": params['steps'],
"cfg_scale": params['cfg_scale'],
"width": params['width'],
"height": params['height'],
"restore_faces": params['restore_faces'],
"override_settings_restore_afterwards": True,
"negative_prompt": params['negative_prompt']
}
print(f'Prompting the image generator via the API on {params["address"]}...')
response = requests.post(url=f'{params["address"]}/sdapi/v1/txt2img', json=payload)
response.raise_for_status()
r = response.json()
visible_result = ""
for img_str in r['images']:
if params['save_img']:
img_data = base64.b64decode(img_str)
variadic = f'{date.today().strftime("%Y_%m_%d")}/{shared.character}_{int(time.time())}'
output_file = Path(f'extensions/sd_api_pictures/outputs/{variadic}.png')
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file.as_posix(), 'wb') as f:
f.write(img_data)
visible_result = visible_result + f'<img src="/file/extensions/sd_api_pictures/outputs/{variadic}.png" alt="{description}" style="max-width: unset; max-height: unset;">\n'
else:
image = Image.open(io.BytesIO(base64.b64decode(img_str.split(",", 1)[0])))
# lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history
image.thumbnail((300, 300))
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
buffered.seek(0)
image_bytes = buffered.getvalue()
img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode()
visible_result = visible_result + f'<img src="{img_str}" alt="{description}">\n'
if params['manage_VRAM']:
give_VRAM_priority('LLM')
return visible_result
# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history)
# and replace it with 'text' for the purposes of logging?
def output_modifier(string):
"""
This function is applied to the model outputs.
"""
global picture_response, params
if not picture_response:
return string
string = remove_surrounded_chars(string)
string = string.replace('"', '')
string = string.replace('“', '')
string = string.replace('\n', ' ')
string = string.strip()
if string == '':
string = 'no viable description in reply, try regenerating'
return string
text = ""
if (params['mode'] < 2):
toggle_generation(False)
text = f'*Sends a picture which portrays: “{string}”*'
else:
text = string
string = get_SD_pictures(string) + "\n" + text
return string
def bot_prefix_modifier(string):
"""
This function is only applied in chat mode. It modifies
the prefix text for the Bot and can be used to bias its
behavior.
"""
return string
def toggle_generation(*args):
global picture_response, shared
if not args:
picture_response = not picture_response
else:
picture_response = args[0]
shared.processing_message = "*Is sending a picture...*" if picture_response else "*Is typing...*"
def filter_address(address):
address = address.strip()
# address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash
address = re.sub('\/$', '', address) # remove trailing /s
if not address.startswith('http'):
address = 'http://' + address
return address
def SD_api_address_update(address):
global params
msg = "✔️ SD API is found on:"
address = filter_address(address)
params.update({"address": address})
try:
response = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models')
response.raise_for_status()
# r = response.json()
except:
msg = "❌ No SD API endpoint on:"
return gr.Textbox.update(label=msg)
def custom_css():
path_to_css = Path(__file__).parent.resolve() / 'style.css'
return open(path_to_css, 'r').read()
def ui():
# Gradio elements
# gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title
with gr.Accordion("Parameters", open=True, elem_classes="SDAP"):
with gr.Row():
address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Auto1111\'s WebUI address')
modes_list = ["Manual", "Immersive/Interactive", "Picturebook/Adventure"]
mode = gr.Dropdown(modes_list, value=modes_list[params['mode']], label="Mode of operation", type="index")
with gr.Column(scale=1, min_width=300):
manage_VRAM = gr.Checkbox(value=params['manage_VRAM'], label='Manage VRAM')
save_img = gr.Checkbox(value=params['save_img'], label='Keep original images and use them in chat')
force_pic = gr.Button("Force the picture response")
suppr_pic = gr.Button("Suppress the picture response")
with gr.Accordion("Generation parameters", open=False):
prompt_prefix = gr.Textbox(placeholder=params['prompt_prefix'], value=params['prompt_prefix'], label='Prompt Prefix (best used to describe the look of the character)')
negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt')
with gr.Row():
with gr.Column():
width = gr.Slider(256, 768, value=params['width'], step=64, label='Width')
height = gr.Slider(256, 768, value=params['height'], step=64, label='Height')
with gr.Column():
sampler_name = gr.Textbox(placeholder=params['sampler_name'], value=params['sampler_name'], label='Sampling method', elem_id="sampler_box")
steps = gr.Slider(1, 150, value=params['steps'], step=1, label="Sampling steps")
with gr.Row():
seed = gr.Number(label="Seed", value=params['seed'], elem_id="seed_box")
cfg_scale = gr.Number(label="CFG Scale", value=params['cfg_scale'], elem_id="cfg_box")
with gr.Column() as hr_options:
restore_faces = gr.Checkbox(value=params['restore_faces'], label='Restore faces')
enable_hr = gr.Checkbox(value=params['enable_hr'], label='Hires. fix')
with gr.Row(visible=params['enable_hr'], elem_classes="hires_opts") as hr_options:
hr_scale = gr.Slider(1, 4, value=params['hr_scale'], step=0.1, label='Upscale by')
denoising_strength = gr.Slider(0, 1, value=params['denoising_strength'], step=0.01, label='Denoising strength')
hr_upscaler = gr.Textbox(placeholder=params['hr_upscaler'], value=params['hr_upscaler'], label='Upscaler')
# Event functions to update the parameters in the backend
address.change(lambda x: params.update({"address": filter_address(x)}), address, None)
mode.select(lambda x: params.update({"mode": x}), mode, None)
mode.select(lambda x: toggle_generation(x > 1), inputs=mode, outputs=None)
manage_VRAM.change(lambda x: params.update({"manage_VRAM": x}), manage_VRAM, None)
manage_VRAM.change(lambda x: give_VRAM_priority('set' if x else 'reset'), inputs=manage_VRAM, outputs=None)
save_img.change(lambda x: params.update({"save_img": x}), save_img, None)
address.submit(fn=SD_api_address_update, inputs=address, outputs=address)
prompt_prefix.change(lambda x: params.update({"prompt_prefix": x}), prompt_prefix, None)
negative_prompt.change(lambda x: params.update({"negative_prompt": x}), negative_prompt, None)
width.change(lambda x: params.update({"width": x}), width, None)
height.change(lambda x: params.update({"height": x}), height, None)
hr_scale.change(lambda x: params.update({"hr_scale": x}), hr_scale, None)
denoising_strength.change(lambda x: params.update({"denoising_strength": x}), denoising_strength, None)
restore_faces.change(lambda x: params.update({"restore_faces": x}), restore_faces, None)
hr_upscaler.change(lambda x: params.update({"hr_upscaler": x}), hr_upscaler, None)
enable_hr.change(lambda x: params.update({"enable_hr": x}), enable_hr, None)
enable_hr.change(lambda x: hr_options.update(visible=params["enable_hr"]), enable_hr, hr_options)
sampler_name.change(lambda x: params.update({"sampler_name": x}), sampler_name, None)
steps.change(lambda x: params.update({"steps": x}), steps, None)
seed.change(lambda x: params.update({"seed": x}), seed, None)
cfg_scale.change(lambda x: params.update({"cfg_scale": x}), cfg_scale, None)
force_pic.click(lambda x: toggle_generation(True), inputs=force_pic, outputs=None)
suppr_pic.click(lambda x: toggle_generation(False), inputs=suppr_pic, outputs=None)