pengdaqian
fix
62e9d65
import os
from datetime import datetime
from pathlib import Path
import torch
import typer
from accelerate import Accelerator
from accelerate.utils import LoggerType
from torch import Tensor
from torch.optim import AdamW
# from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from tqdm import tqdm
from data import MusdbDataset
from splitter import Splitter
DISABLE_TQDM = os.environ.get("DISABLE_TQDM", False)
app = typer.Typer(pretty_exceptions_show_locals=False)
def spectrogram_loss(masked_target: Tensor, original: Tensor) -> Tensor:
"""
masked_target (Tensor): a masked STFT generated by applying a net's
estimated mask for source S to the ground truth STFT for source S
original (Tensor): an original input mixture
"""
square_difference = torch.square(masked_target - original)
loss_value = torch.mean(square_difference)
return loss_value
@app.command()
def train(
dataset: str = "data/musdb18-wav",
output_dir: str = None,
fp16: bool = False,
cpu: bool = True,
max_steps: int = 100,
num_train_epochs: int = 1,
per_device_train_batch_size: int = 1,
effective_batch_size: int = 4,
max_grad_norm: float = 0.0,
) -> None:
if not output_dir:
now_str = datetime.now().strftime("%Y%m%d-%H%M%S")
output_dir = f"experiments/{now_str}"
output_dir = Path(output_dir)
logging_dir = output_dir / "tracker_logs"
accelerator = Accelerator(
fp16=fp16,
cpu=cpu,
logging_dir=logging_dir,
log_with=[LoggerType.TENSORBOARD],
)
accelerator.init_trackers(logging_dir / "run")
train_dataset = MusdbDataset(root=dataset, is_train=True)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
batch_size=per_device_train_batch_size,
)
model = Splitter(stem_names=[s for s in train_dataset.targets])
optimizer = AdamW(
model.parameters(),
lr=1e-3,
eps=1e-8,
)
model, optimizer, train_dataloader = accelerator.prepare(
model, optimizer, train_dataloader
)
num_train_steps = (
max_steps if max_steps > 0 else len(train_dataloader) * num_train_epochs
)
accelerator.print(f"Num train steps: {num_train_steps}")
step_batch_size = per_device_train_batch_size * accelerator.num_processes
gradient_accumulation_steps = max(
1,
effective_batch_size // step_batch_size,
)
accelerator.print(
f"Gradient Accumulation Steps: {gradient_accumulation_steps}\nEffective Batch Size: {gradient_accumulation_steps * step_batch_size}"
)
global_step = 0
while global_step < num_train_steps:
accelerator.wait_for_everyone()
# accelerator.print(f"global step: {global_step}")
# accelerator.print("running train...")
model.train()
batch_iterator = tqdm(
train_dataloader,
desc="Batch",
disable=((not accelerator.is_local_main_process) or DISABLE_TQDM),
)
for batch_idx, batch in enumerate(batch_iterator):
assert per_device_train_batch_size == 1, "For now limit to 1."
x_wav, y_target_wavs = batch
predictions = model(x_wav)
stem_losses = []
for name, masked_stft in predictions.items():
target_stft, _ = model.compute_stft(y_target_wavs[name].squeeze())
loss = spectrogram_loss(
masked_target=masked_stft,
original=target_stft,
)
stem_losses.append(loss)
accelerator.log({f"train-loss-{name}": 1.0 * loss}, step=global_step)
total_loss = (
torch.sum(torch.stack(stem_losses)) / gradient_accumulation_steps
)
accelerator.print(f"global step: {global_step}\tloss: {total_loss:.4f}")
accelerator.log({f"train-loss": 1.0 * total_loss}, step=global_step)
accelerator.backward(total_loss)
if (batch_idx + 1) % gradient_accumulation_steps == 0:
if max_grad_norm > 0:
accelerator.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
global_step += 1
accelerator.wait_for_everyone()
accelerator.end_training()
accelerator.print(f"Saving model to {output_dir}...")
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
output_dir,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
accelerator.wait_for_everyone()
accelerator.print("DONE!")
if __name__ == "__main__":
app()