Spaces:
Runtime error
Runtime error
| from pathlib import Path | |
| import torch | |
| import typer | |
| from utils import sound_split | |
| app = typer.Typer() | |
| def model_summary() -> None: | |
| from unet import UNet | |
| net = UNet() | |
| print(net) | |
| def test() -> None: | |
| from unet import UNet | |
| batch_size = 5 | |
| n_channels = 2 | |
| x = torch.randn(batch_size, n_channels, 512, 128) | |
| print(x.shape) | |
| net = UNet(in_channels=n_channels) | |
| y = net.forward(x) | |
| print(y.shape) | |
| def split( | |
| model_path: str = "models/2stems/model", | |
| input: str = "data/audio_example.mp3", | |
| output_dir: str = "output", | |
| offset: float = 0, | |
| duration: float = 30, | |
| write_src: bool = False, | |
| ) -> None: | |
| from splitter import Splitter | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| splitter_model = Splitter.from_pretrained(model_path).to(device).eval() | |
| sound_split(splitter_model, input, output_dir, write_src) | |
| if __name__ == "__main__": | |
| app() | |