Spaces:
Running
Running
import torch | |
from vencoder.encoder import SpeechEncoder | |
from vencoder.whisper.audio import log_mel_spectrogram, pad_or_trim | |
from vencoder.whisper.model import ModelDimensions, Whisper | |
class WhisperPPGLarge(SpeechEncoder): | |
def __init__(self, vec_path="pretrain/large-v2.pt", device=None): | |
super().__init__() | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
checkpoint = torch.load(vec_path, map_location=device) | |
dims = ModelDimensions(**checkpoint["dims"]) | |
model = Whisper(dims) | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
self.hidden_dim = dims | |
self.model = model.to(self.dev) | |
def encoder(self, wav): | |
audio = wav | |
audln = audio.shape[0] | |
ppgln = audln // 320 | |
audio = pad_or_trim(audio) | |
mel = log_mel_spectrogram(audio).to(self.dev) | |
with torch.no_grad(): | |
ppg = self.model.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
ppg = torch.FloatTensor(ppg[:ppgln, ]).to(self.dev) | |
return ppg[None, :, :].transpose(1, 2) | |