|
|
|
|
|
|
|
|
|
|
|
import os |
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
|
|
import torch |
|
import numpy as np |
|
from . import util |
|
from .body import Body |
|
from .hand import Hand |
|
from annotator.util import annotator_ckpts_path |
|
|
|
|
|
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth" |
|
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth" |
|
|
|
|
|
class OpenposeDetector: |
|
def __init__(self): |
|
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") |
|
hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") |
|
|
|
if not os.path.exists(hand_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) |
|
load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) |
|
|
|
self.body_estimation = Body(body_modelpath) |
|
self.hand_estimation = Hand(hand_modelpath) |
|
|
|
def __call__(self, oriImg, hand=False): |
|
oriImg = oriImg[:, :, ::-1].copy() |
|
with torch.no_grad(): |
|
candidate, subset = self.body_estimation(oriImg) |
|
canvas = np.zeros_like(oriImg) |
|
canvas = util.draw_bodypose(canvas, candidate, subset) |
|
if hand: |
|
hands_list = util.handDetect(candidate, subset, oriImg) |
|
all_hand_peaks = [] |
|
for x, y, w, is_left in hands_list: |
|
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]) |
|
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x) |
|
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y) |
|
all_hand_peaks.append(peaks) |
|
canvas = util.draw_handpose(canvas, all_hand_peaks) |
|
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist()) |
|
|