Spaces:
Running
Running
#Save ZeroGPU limited resources, switch to InferenceAPI | |
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from huggingface_hub import AsyncInferenceClient | |
from translatepy import Translator | |
import requests | |
import re | |
import asyncio | |
from PIL import Image | |
translator = Translator() | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Constants | |
basemodel = "black-forest-labs/FLUX.1-dev" | |
MAX_SEED = np.iinfo(np.int32).max | |
CSS = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
JS = """function () { | |
gradioURL = window.location.href | |
if (!gradioURL.endsWith('?__theme=dark')) { | |
window.location.replace(gradioURL + '?__theme=dark'); | |
} | |
}""" | |
def enable_lora(lora_add): | |
if not lora_add: | |
return basemodel | |
else: | |
return lora_add | |
async def generate_image( | |
prompt:str, | |
negative_prompt:str, | |
model:str, | |
lora_word:str, | |
width:int=768, | |
height:int=1024, | |
scales:float=3.5, | |
steps:int=24, | |
seed:int=-1): | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
print(f'prompt:{prompt}') | |
text = str(translator.translate(prompt, 'English')) + "," + lora_word | |
client = AsyncInferenceClient() | |
try: | |
image = await client.text_to_image( | |
prompt=text, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
num_inference_steps=steps, | |
model=model, | |
) | |
except Exception as e: | |
raise gr.Error(f"Error in {e}") | |
return image, seed | |
async def gen( | |
prompt:str, | |
lora_add:str="", | |
lora_word:str="", | |
negative_prompt:str="", | |
width:int=768, | |
height:int=1024, | |
scales:float=3.5, | |
steps:int=24, | |
seed:int=-1, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
model = enable_lora(lora_add) | |
print(model) | |
image, seed = await generate_image(prompt,negative_prompt,model,lora_word,width,height,scales,steps,seed) | |
return image, seed | |
examples = [ | |
["A cartoon-style blonde European-American woman wearing sunglasses stood in front of the triumphant door to take a selfie, the upper bodyartistic style","Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration","artistic style blends elements of reality and illustration"], | |
["A cartoon style European woman wearing glasses is eating a table of seafood,including lobster,oysters,and other shellfish,in a well lit modern restaurant. The background of the restaurant is very blurry,and she is holding the utensils ready to eat. There is a glass of red wine and various dishes on the table. The illustrations contrast with the real food and environment,creating a unique mixed media effect and high angle perspective","Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration","artistic style blends elements of reality and illustration"], | |
["photograph, background of Earth from space, red car on the Moon watching Earth","martintomov/retrofuturism-flux","retrofuturism"], | |
["red sports car with `SPACE RIDER` on its frontal hood, frontal view with a person visible inside through the windshield, car is emerging from a circular radiant portal with bright orange and red hues against a dark background, sense of high-speed motion and a tunnel-like effect","martintomov/retrofuturism-flux","retrofuturism"] | |
] | |
# Gradio Interface | |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<h1><center>Flux Lab Light</center></h1>") | |
gr.HTML("<p><center>Powered By HF Inference API</center></p>") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
img = gr.Image(type="filepath", label='flux Generated Image', height=600) | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6) | |
sendBtn = gr.Button(scale=1, variant='primary') | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Column(scale=1): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=768, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=1024, | |
) | |
scales = gr.Slider( | |
label="Guidance", | |
minimum=3.5, | |
maximum=7, | |
step=0.1, | |
value=3.5, | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=24, | |
) | |
seed = gr.Slider( | |
label="Seeds", | |
minimum=-1, | |
maximum=MAX_SEED, | |
step=1, | |
value=-1, | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
lines=1, | |
value="low quality" | |
) | |
lora_add = gr.Textbox( | |
label="Add Flux LoRA", | |
info="Copy the HF LoRA model name here", | |
lines=1, | |
value="Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration", | |
) | |
lora_word = gr.Textbox( | |
label="Add Flux LoRA Trigger Word", | |
info="Add the Trigger Word", | |
lines=1, | |
value="", | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt,lora_add,lora_word], | |
outputs=[img, seed], | |
fn=gen, | |
cache_examples="lazy", | |
examples_per_page=4, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
sendBtn.click, | |
], | |
fn=gen, | |
inputs=[ | |
prompt, | |
lora_add, | |
lora_word, | |
negative_prompt, | |
width, | |
height, | |
scales, | |
steps, | |
seed | |
], | |
outputs=[img, seed], | |
api_name="run", | |
) | |
demo.queue().launch() |