Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
import
|
|
|
4 |
import os
|
5 |
|
6 |
-
# Hugging Face Inference API setup
|
7 |
-
API_URL = "https://api-inference.huggingface.co/models/Benevolent/PonyDiffusionV10"
|
8 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Get token from environment variable
|
9 |
-
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
10 |
|
11 |
-
def query(payload):
|
12 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
13 |
-
return json.loads(response.content)
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
payload = {
|
18 |
-
"inputs": prompt,
|
19 |
-
}
|
20 |
-
response = query(payload)
|
21 |
-
if 'error' in response:
|
22 |
-
return f"Error: {response['error']}"
|
23 |
-
# Check for the generated image
|
24 |
-
if isinstance(response, list) and len(response) > 0 and "generated_image" in response[0]:
|
25 |
-
return response[0]["generated_image"] # Base64 encoded image
|
26 |
-
return "No image returned from model"
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
with gr.Row():
|
31 |
-
gr.Markdown("# PonyDiffusion V10 Text-to-Image Generator")
|
32 |
-
|
33 |
-
with gr.Row():
|
34 |
-
prompt = gr.Textbox(label="Enter a prompt for the image")
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
import os
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load API Token from environment variable
|
10 |
+
API_TOKEN = os.getenv("HF_API_TOKEN") # Ensure you've set this environment variable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Hugging Face Inference API URL
|
13 |
+
API_URL = "https://api-inference.huggingface.co/models/Benevolent/PonyDiffusionV10"
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Function to call Hugging Face API and get the generated image
|
16 |
+
def generate_image(prompt):
|
17 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
18 |
+
data = {"inputs": prompt}
|
19 |
+
|
20 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
21 |
+
|
22 |
+
if response.status_code == 200:
|
23 |
+
image_bytes = BytesIO(response.content)
|
24 |
+
image = Image.open(image_bytes)
|
25 |
+
return image
|
26 |
+
else:
|
27 |
+
return f"Error: {response.status_code}, {response.text}"
|
28 |
|
29 |
+
# Create Gradio interface
|
30 |
+
def create_ui():
|
31 |
+
with gr.Blocks() as ui:
|
32 |
+
gr.Markdown("## PonyDiffusionV10 - Text to Image Generator")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe the image you want to generate", lines=3)
|
36 |
+
generate_button = gr.Button("Generate Image")
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
output_image = gr.Image(label="Generated Image")
|
40 |
+
|
41 |
+
# Link the button to the function
|
42 |
+
generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image)
|
43 |
+
|
44 |
+
return ui
|
45 |
|
46 |
+
# Run the interface
|
47 |
+
if __name__ == "__main__":
|
48 |
+
create_ui().launch()
|