CoNR / train.py
p2oileen's picture
fix tqdm
265964a
import argparse
import os
import time
from datetime import datetime
from distutils.util import strtobool
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from data_loader import (FileDataset,
RandomResizedCropWithAutoCenteringAndZeroPadding)
from torch.utils.data.distributed import DistributedSampler
from conr import CoNR
from tqdm import tqdm
def data_sampler(dataset, shuffle, distributed):
if distributed:
return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return torch.utils.data.RandomSampler(dataset)
else:
return torch.utils.data.SequentialSampler(dataset)
def save_output(image_name, inputs_v, d_dir=".", crop=None):
import cv2
inputs_v = inputs_v.detach().squeeze()
input_np = torch.clamp(inputs_v*255, 0, 255).byte().cpu().numpy().transpose(
(1, 2, 0))
# cv2.setNumThreads(1)
out_render_scale = cv2.cvtColor(input_np, cv2.COLOR_RGBA2BGRA)
if crop is not None:
crop = crop.cpu().numpy()[0]
output_img = np.zeros((crop[0], crop[1], 4), dtype=np.uint8)
before_resize_scale = cv2.resize(
out_render_scale, (crop[5]-crop[4]+crop[8]+crop[9], crop[3]-crop[2]+crop[6]+crop[7]), interpolation=cv2.INTER_AREA) # w,h
output_img[crop[2]:crop[3], crop[4]:crop[5]] = before_resize_scale[crop[6]:before_resize_scale.shape[0] -
crop[7], crop[8]:before_resize_scale.shape[1]-crop[9]]
else:
output_img = out_render_scale
cv2.imwrite(d_dir+"/"+image_name.split(os.sep)[-1]+'.png',
output_img
)
def test():
source_names_list = []
for name in sorted(os.listdir(args.test_input_person_images)):
thissource = os.path.join(args.test_input_person_images, name)
if os.path.isfile(thissource):
source_names_list.append(thissource)
if os.path.isdir(thissource):
print("skipping empty folder :"+thissource)
image_names_list = []
for name in sorted(os.listdir(args.test_input_poses_images)):
thistarget = os.path.join(args.test_input_poses_images, name)
if os.path.isfile(thistarget):
image_names_list.append([thistarget, *source_names_list])
if os.path.isdir(thistarget):
print("skipping folder :"+thistarget)
print(image_names_list)
print("---building models")
conrmodel = CoNR(args)
conrmodel.load_model(path=args.test_checkpoint_dir)
conrmodel.dist()
infer(args, conrmodel, image_names_list)
def infer(args, humanflowmodel, image_names_list):
print("---test images: ", len(image_names_list))
test_salobj_dataset = FileDataset(image_names_list=image_names_list,
fg_img_lbl_transform=transforms.Compose([
RandomResizedCropWithAutoCenteringAndZeroPadding(
(args.dataloader_imgsize, args.dataloader_imgsize), scale=(1, 1), ratio=(1.0, 1.0), center_jitter=(0.0, 0.0)
)]),
shader_pose_use_gt_udp_test=not args.test_pose_use_parser_udp,
shader_target_use_gt_rgb_debug=False
)
sampler = data_sampler(test_salobj_dataset, shuffle=False,
distributed=args.distributed)
train_data = DataLoader(test_salobj_dataset,
batch_size=1,
shuffle=False,sampler=sampler,
num_workers=args.dataloaders)
# start testing
train_num = train_data.__len__()
time_stamp = time.time()
prev_frame_rgb = []
prev_frame_a = []
pbar = tqdm(range(train_num), ncols=100)
for i, data in enumerate(train_data):
data_time_interval = time.time() - time_stamp
time_stamp = time.time()
with torch.no_grad():
data["character_images"] = torch.cat(
[data["character_images"], *prev_frame_rgb], dim=1)
data["character_masks"] = torch.cat(
[data["character_masks"], *prev_frame_a], dim=1)
data = humanflowmodel.data_norm_image(data)
pred = humanflowmodel.model_step(data, training=False)
# remember to call humanflowmodel.reset_charactersheet() if you change character .
train_time_interval = time.time() - time_stamp
time_stamp = time.time()
if args.local_rank == 0:
pbar.set_description(f"Epoch {i}/{train_num}")
pbar.set_postfix({"data_time": data_time_interval, "train_time":train_time_interval})
pbar.update(1)
with torch.no_grad():
if args.test_output_video:
pred_img = pred["shader"]["y_weighted_warp_decoded_rgba"]
save_output(
str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir, crop=data["pose_crop"])
if args.test_output_udp:
pred_img = pred["shader"]["x_target_sudp_a"]
save_output(
"udp_"+str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir)
def build_args():
parser = argparse.ArgumentParser()
# distributed learning settings
parser.add_argument("--world_size", type=int, default=1,
help='world size')
parser.add_argument("--local_rank", type=int, default=0,
help='local_rank, DON\'T change it')
# model settings
parser.add_argument('--dataloader_imgsize', type=int, default=256,
help='Input image size of the model')
parser.add_argument('--batch_size', type=int, default=4,
help='minibatch size')
parser.add_argument('--model_name', default='model_result',
help='Name of the experiment')
parser.add_argument('--dataloaders', type=int, default=2,
help='Num of dataloaders')
parser.add_argument('--mode', default="test", choices=['train', 'test'],
help='Training mode or Testing mode')
# i/o settings
parser.add_argument('--test_input_person_images',
type=str, default="./character_sheet/",
help='Directory to input character sheets')
parser.add_argument('--test_input_poses_images', type=str,
default="./test_data/",
help='Directory to input UDP sequences or pose images')
parser.add_argument('--test_checkpoint_dir', type=str,
default='./weights/',
help='Directory to model weights')
parser.add_argument('--test_output_dir', type=str,
default="./results/",
help='Directory to output images')
# output content settings
parser.add_argument('--test_output_video', type=strtobool, default=True,
help='Whether to output the final result of CoNR, \
images will be output to test_output_dir while True.')
parser.add_argument('--test_output_udp', type=strtobool, default=False,
help='Whether to output UDP generated from UDP detector, \
this is meaningful ONLY when test_input_poses_images \
is not UDP sequences but pose images. Meanwhile, \
test_pose_use_parser_udp need to be True')
# UDP detector settings
parser.add_argument('--test_pose_use_parser_udp',
type=strtobool, default=False,
help='Whether to use UDP detector to generate UDP from pngs, \
pose input MUST be pose images instead of UDP sequences \
while True')
args = parser.parse_args()
args.distributed = (args.world_size > 1)
if args.local_rank == 0:
print("batch_size:", args.batch_size, flush=True)
if args.distributed:
if args.local_rank == 0:
print("world_size: ", args.world_size)
torch.distributed.init_process_group(
backend="nccl", init_method="env://", world_size=args.world_size)
torch.cuda.set_device(args.local_rank)
torch.backends.cudnn.benchmark = True
else:
args.local_rank = 0
return args
if __name__ == "__main__":
args = build_args()
test()