Spaces:
Sleeping
Sleeping
from typing import Optional, Union | |
try: | |
from typing import Literal | |
except Exception: | |
from typing_extensions import Literal | |
import numpy as np | |
import torch | |
import torchcrepe | |
from torch import nn | |
from torch.nn import functional as F | |
#from:https://github.com/fishaudio/fish-diffusion | |
def repeat_expand( | |
content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest" | |
): | |
"""Repeat content to target length. | |
This is a wrapper of torch.nn.functional.interpolate. | |
Args: | |
content (torch.Tensor): tensor | |
target_len (int): target length | |
mode (str, optional): interpolation mode. Defaults to "nearest". | |
Returns: | |
torch.Tensor: tensor | |
""" | |
ndim = content.ndim | |
if content.ndim == 1: | |
content = content[None, None] | |
elif content.ndim == 2: | |
content = content[None] | |
assert content.ndim == 3 | |
is_np = isinstance(content, np.ndarray) | |
if is_np: | |
content = torch.from_numpy(content) | |
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) | |
if is_np: | |
results = results.numpy() | |
if ndim == 1: | |
return results[0, 0] | |
elif ndim == 2: | |
return results[0] | |
class BasePitchExtractor: | |
def __init__( | |
self, | |
hop_length: int = 512, | |
f0_min: float = 50.0, | |
f0_max: float = 1100.0, | |
keep_zeros: bool = True, | |
): | |
"""Base pitch extractor. | |
Args: | |
hop_length (int, optional): Hop length. Defaults to 512. | |
f0_min (float, optional): Minimum f0. Defaults to 50.0. | |
f0_max (float, optional): Maximum f0. Defaults to 1100.0. | |
keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True. | |
""" | |
self.hop_length = hop_length | |
self.f0_min = f0_min | |
self.f0_max = f0_max | |
self.keep_zeros = keep_zeros | |
def __call__(self, x, sampling_rate=44100, pad_to=None): | |
raise NotImplementedError("BasePitchExtractor is not callable.") | |
def post_process(self, x, sampling_rate, f0, pad_to): | |
if isinstance(f0, np.ndarray): | |
f0 = torch.from_numpy(f0).float().to(x.device) | |
if pad_to is None: | |
return f0 | |
f0 = repeat_expand(f0, pad_to) | |
if self.keep_zeros: | |
return f0 | |
vuv_vector = torch.zeros_like(f0) | |
vuv_vector[f0 > 0.0] = 1.0 | |
vuv_vector[f0 <= 0.0] = 0.0 | |
# 去掉0频率, 并线性插值 | |
nzindex = torch.nonzero(f0).squeeze() | |
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() | |
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() | |
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate | |
vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0] | |
if f0.shape[0] <= 0: | |
return torch.zeros(pad_to, dtype=torch.float, device=x.device),vuv_vector.cpu().numpy() | |
if f0.shape[0] == 1: | |
return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],vuv_vector.cpu().numpy() | |
# 大概可以用 torch 重写? | |
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
#vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) | |
return f0,vuv_vector.cpu().numpy() | |
class MaskedAvgPool1d(nn.Module): | |
def __init__( | |
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0 | |
): | |
"""An implementation of mean pooling that supports masked values. | |
Args: | |
kernel_size (int): The size of the median pooling window. | |
stride (int, optional): The stride of the median pooling window. Defaults to None. | |
padding (int, optional): The padding of the median pooling window. Defaults to 0. | |
""" | |
super(MaskedAvgPool1d, self).__init__() | |
self.kernel_size = kernel_size | |
self.stride = stride or kernel_size | |
self.padding = padding | |
def forward(self, x, mask=None): | |
ndim = x.dim() | |
if ndim == 2: | |
x = x.unsqueeze(1) | |
assert ( | |
x.dim() == 3 | |
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)" | |
# Apply the mask by setting masked elements to zero, or make NaNs zero | |
if mask is None: | |
mask = ~torch.isnan(x) | |
# Ensure mask has the same shape as the input tensor | |
assert x.shape == mask.shape, "Input tensor and mask must have the same shape" | |
masked_x = torch.where(mask, x, torch.zeros_like(x)) | |
# Create a ones kernel with the same number of channels as the input tensor | |
ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device) | |
# Perform sum pooling | |
sum_pooled = nn.functional.conv1d( | |
masked_x, | |
ones_kernel, | |
stride=self.stride, | |
padding=self.padding, | |
groups=x.size(1), | |
) | |
# Count the non-masked (valid) elements in each pooling window | |
valid_count = nn.functional.conv1d( | |
mask.float(), | |
ones_kernel, | |
stride=self.stride, | |
padding=self.padding, | |
groups=x.size(1), | |
) | |
valid_count = valid_count.clamp(min=1) # Avoid division by zero | |
# Perform masked average pooling | |
avg_pooled = sum_pooled / valid_count | |
# Fill zero values with NaNs | |
avg_pooled[avg_pooled == 0] = float("nan") | |
if ndim == 2: | |
return avg_pooled.squeeze(1) | |
return avg_pooled | |
class MaskedMedianPool1d(nn.Module): | |
def __init__( | |
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0 | |
): | |
"""An implementation of median pooling that supports masked values. | |
This implementation is inspired by the median pooling implementation in | |
https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598 | |
Args: | |
kernel_size (int): The size of the median pooling window. | |
stride (int, optional): The stride of the median pooling window. Defaults to None. | |
padding (int, optional): The padding of the median pooling window. Defaults to 0. | |
""" | |
super(MaskedMedianPool1d, self).__init__() | |
self.kernel_size = kernel_size | |
self.stride = stride or kernel_size | |
self.padding = padding | |
def forward(self, x, mask=None): | |
ndim = x.dim() | |
if ndim == 2: | |
x = x.unsqueeze(1) | |
assert ( | |
x.dim() == 3 | |
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)" | |
if mask is None: | |
mask = ~torch.isnan(x) | |
assert x.shape == mask.shape, "Input tensor and mask must have the same shape" | |
masked_x = torch.where(mask, x, torch.zeros_like(x)) | |
x = F.pad(masked_x, (self.padding, self.padding), mode="reflect") | |
mask = F.pad( | |
mask.float(), (self.padding, self.padding), mode="constant", value=0 | |
) | |
x = x.unfold(2, self.kernel_size, self.stride) | |
mask = mask.unfold(2, self.kernel_size, self.stride) | |
x = x.contiguous().view(x.size()[:3] + (-1,)) | |
mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device) | |
# Combine the mask with the input tensor | |
#x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf"))) | |
x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device)) | |
# Sort the masked tensor along the last dimension | |
x_sorted, _ = torch.sort(x_masked, dim=-1) | |
# Compute the count of non-masked (valid) values | |
valid_count = mask.sum(dim=-1) | |
# Calculate the index of the median value for each pooling window | |
median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0) | |
# Gather the median values using the calculated indices | |
median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1) | |
# Fill infinite values with NaNs | |
median_pooled[torch.isinf(median_pooled)] = float("nan") | |
if ndim == 2: | |
return median_pooled.squeeze(1) | |
return median_pooled | |
class CrepePitchExtractor(BasePitchExtractor): | |
def __init__( | |
self, | |
hop_length: int = 512, | |
f0_min: float = 50.0, | |
f0_max: float = 1100.0, | |
threshold: float = 0.05, | |
keep_zeros: bool = False, | |
device = None, | |
model: Literal["full", "tiny"] = "full", | |
use_fast_filters: bool = True, | |
decoder="viterbi" | |
): | |
super().__init__(hop_length, f0_min, f0_max, keep_zeros) | |
if decoder == "viterbi": | |
self.decoder = torchcrepe.decode.viterbi | |
elif decoder == "argmax": | |
self.decoder = torchcrepe.decode.argmax | |
elif decoder == "weighted_argmax": | |
self.decoder = torchcrepe.decode.weighted_argmax | |
else: | |
raise "Unknown decoder" | |
self.threshold = threshold | |
self.model = model | |
self.use_fast_filters = use_fast_filters | |
self.hop_length = hop_length | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
if self.use_fast_filters: | |
self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device) | |
self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device) | |
def __call__(self, x, sampling_rate=44100, pad_to=None): | |
"""Extract pitch using crepe. | |
Args: | |
x (torch.Tensor): Audio signal, shape (1, T). | |
sampling_rate (int, optional): Sampling rate. Defaults to 44100. | |
pad_to (int, optional): Pad to length. Defaults to None. | |
Returns: | |
torch.Tensor: Pitch, shape (T // hop_length,). | |
""" | |
assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor." | |
assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels." | |
x = x.to(self.dev) | |
f0, pd = torchcrepe.predict( | |
x, | |
sampling_rate, | |
self.hop_length, | |
self.f0_min, | |
self.f0_max, | |
pad=True, | |
model=self.model, | |
batch_size=1024, | |
device=x.device, | |
return_periodicity=True, | |
decoder=self.decoder | |
) | |
# Filter, remove silence, set uv threshold, refer to the original warehouse readme | |
if self.use_fast_filters: | |
pd = self.median_filter(pd) | |
else: | |
pd = torchcrepe.filter.median(pd, 3) | |
pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, self.hop_length) | |
f0 = torchcrepe.threshold.At(self.threshold)(f0, pd) | |
if self.use_fast_filters: | |
f0 = self.mean_filter(f0) | |
else: | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0] | |
if torch.all(f0 == 0): | |
rtn = f0.cpu().numpy() if pad_to is None else np.zeros(pad_to) | |
return rtn,rtn | |
return self.post_process(x, sampling_rate, f0, pad_to) | |