Spaces:
Sleeping
Sleeping
"""Speech SSL models supporting pruning. | |
Originally from: | |
https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/model.py | |
""" | |
import math | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch.nn import Module | |
from . import components | |
class Wav2Vec2Model(Module): | |
"""Acoustic model used in *wav2vec 2.0* :cite:`baevski2020wav2vec`. | |
Note: | |
To build the model, please use one of the factory functions. | |
:py:func:`wav2vec2_model`, :py:func:`wav2vec2_base`, :py:func:`wav2vec2_large`, | |
:py:func:`wav2vec2_large_lv60k`, :py:func:`hubert_base`, :py:func:`hubert_large`, | |
and :py:func:`hubert_xlarge`. | |
See Also: | |
* :class:`torchaudio.pipelines.Wav2Vec2Bundle`: Pretrained models (without fine-tuning) | |
* :class:`torchaudio.pipelines.Wav2Vec2ASRBundle`: ASR pipelines with pretrained models. | |
Args: | |
feature_extractor (torch.nn.Module): | |
Feature extractor that extracts feature vectors from raw audio Tensor. | |
encoder (torch.nn.Module): | |
Encoder that converts the audio features into the sequence of probability | |
distribution (in negative log-likelihood) over labels. | |
aux (torch.nn.Module or None, optional): | |
Auxiliary module. If provided, the output from encoder is passed to this module. | |
""" # noqa: E501 | |
def __init__( | |
self, | |
normalize_waveform: bool, | |
feature_extractor: Module, | |
encoder: Module, | |
aux: Optional[Module] = None, | |
): | |
super().__init__() | |
self.normalize_waveform = normalize_waveform | |
self.feature_extractor = feature_extractor | |
self.encoder = encoder | |
self.aux = aux | |
def extract_features( | |
self, | |
waveforms: Tensor, | |
lengths: Optional[Tensor] = None, | |
num_layers: Optional[int] = None, | |
) -> Tuple[List[Tensor], Optional[Tensor]]: | |
"""Extract feature vectors from raw waveforms | |
This returns the list of outputs from the intermediate layers of | |
transformer block in encoder. | |
Args: | |
waveforms (Tensor): Audio tensor of shape `(batch, frames)`. | |
lengths (Tensor or None, optional): | |
Indicates the valid length of each audio in the batch. | |
Shape: `(batch, )`. | |
When the ``waveforms`` contains audios with different durations, | |
by providing ``lengths`` argument, the model will compute | |
the corresponding valid output lengths and apply proper mask in | |
transformer attention layer. | |
If ``None``, it is assumed that the entire audio waveform | |
length is valid. | |
num_layers (int or None, optional): | |
If given, limit the number of intermediate layers to go through. | |
Providing `1` will stop the computation after going through one | |
intermediate layers. If not given, the outputs from all the | |
intermediate layers are returned. | |
Returns: | |
(List[Tensor], Optional[Tensor]): | |
List of Tensors | |
Features from requested layers. | |
Each Tensor is of shape: `(batch, time frame, feature dimension)` | |
Tensor or None | |
If ``lengths`` argument was provided, a Tensor of shape `(batch, )` | |
is returned. | |
It indicates the valid length in time axis of each feature Tensor. | |
""" | |
if self.normalize_waveform: | |
if lengths is not None: | |
waveforms = [ | |
F.layer_norm(wave[:length], (length,)) for wave, length in zip(waveforms, lengths) | |
] | |
waveforms = torch.nn.utils.rnn.pad_sequence(waveforms, batch_first=True) | |
else: | |
waveforms = F.layer_norm(waveforms, waveforms.shape[-1:]) | |
x, lengths = self.feature_extractor(waveforms, lengths) | |
x = self.encoder.extract_features(x, lengths, num_layers) # (num_layers+1,), including the input | |
return x, lengths | |
def get_num_params(self): | |
"""Calculate the current size.""" | |
feature_extractor_size, encoder_in_features = self.feature_extractor.get_num_params_and_final_out_channels() | |
encoder_size = self.encoder.get_num_params(encoder_in_features) | |
return feature_extractor_size + encoder_size | |
def prune(self): | |
self.eval() # must be in eval mode | |
conv_config, conv_out_index = self.feature_extractor.prune() # [(output_channel, kernel_size, stride), ...] | |
transformer_config = self.encoder.prune(conv_out_index) # NOTE: this is a defaultdict(list) | |
use_attention = transformer_config["use_attention"] | |
use_feed_forward = transformer_config["use_feed_forward"] | |
num_heads = transformer_config["num_heads"] # can be [] | |
remaining_heads = transformer_config["remaining_heads"] # can be [] | |
ff_interm_features = transformer_config["ff_interm_features"] | |
return conv_config, use_attention, use_feed_forward, num_heads, remaining_heads, ff_interm_features | |
def forward( | |
self, | |
waveforms: Tensor, | |
lengths: Optional[Tensor] = None, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
"""Compute the sequence of probability distribution over labels. | |
Args: | |
waveforms (Tensor): Audio tensor of shape `(batch, frames)`. | |
lengths (Tensor or None, optional): | |
Indicates the valid length of each audio in the batch. | |
Shape: `(batch, )`. | |
When the ``waveforms`` contains audios with different durations, | |
by providing ``lengths`` argument, the model will compute | |
the corresponding valid output lengths and apply proper mask in | |
transformer attention layer. | |
If ``None``, it is assumed that all the audio in ``waveforms`` | |
have valid length. Default: ``None``. | |
Returns: | |
(Tensor, Optional[Tensor]): | |
Tensor | |
The sequences of probability distribution (in logit) over labels. | |
Shape: `(batch, frames, num labels)`. | |
Tensor or None | |
If ``lengths`` argument was provided, a Tensor of shape `(batch, )` | |
is returned. | |
It indicates the valid length in time axis of the output Tensor. | |
""" | |
if self.normalize_waveform: | |
if lengths is not None: | |
waveforms = [ | |
F.layer_norm(wave[:length], (length,)) for wave, length in zip(waveforms, lengths) | |
] | |
waveforms = torch.nn.utils.rnn.pad_sequence(waveforms, batch_first=True) | |
else: | |
waveforms = F.layer_norm(waveforms, waveforms.shape[-1:]) | |
x, lengths = self.feature_extractor(waveforms, lengths) | |
x = self.encoder(x, lengths) | |
if self.aux is not None: | |
x = self.aux(x) | |
return x, lengths | |
def wav2vec2_model(**configs) -> Wav2Vec2Model: | |
"""Wraps the original wav2vec2_model and wavlm_model.""" | |
if "encoder_remaining_heads" in configs: | |
return wavlm_model(**configs) | |
return wav2vec2_model_original(**configs) | |
def wav2vec2_model_original( | |
extractor_mode: str, | |
extractor_conv_layer_config: Optional[List[Tuple[int, int, int]]], | |
extractor_conv_bias: bool, | |
encoder_embed_dim: int, | |
encoder_projection_dropout: float, | |
encoder_pos_conv_kernel: int, | |
encoder_pos_conv_groups: int, | |
encoder_num_layers: int, | |
encoder_use_attention: List[bool], | |
encoder_use_feed_forward: List[bool], | |
encoder_num_heads: List[int], | |
encoder_head_dim: int, | |
encoder_attention_dropout: float, | |
encoder_ff_interm_features: List[int], | |
encoder_ff_interm_dropout: float, | |
encoder_dropout: float, | |
encoder_layer_norm_first: bool, | |
encoder_layer_drop: float, | |
aux_num_out: Optional[int], | |
normalize_waveform: bool, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds custom :class:`~torchaudio.models.Wav2Vec2Model`. | |
Note: | |
The "feature extractor" below corresponds to | |
`ConvFeatureExtractionModel <https://github.com/pytorch/fairseq/blob/dd3bd3c0497ae9a7ae7364404a6b0a4c501780b3/fairseq/models/wav2vec/wav2vec2.py#L736>`__ | |
in the original ``fairseq`` implementation. | |
This is referred as "(convolutional) feature encoder" in the *wav2vec 2.0* | |
:cite:`baevski2020wav2vec` paper. | |
The "encoder" below corresponds to `TransformerEncoder <https://github.com/pytorch/fairseq/blob/dd3bd3c0497ae9a7ae7364404a6b0a4c501780b3/fairseq/models/wav2vec/wav2vec2.py#L817>`__, | |
and this is referred as "Transformer" in the paper. | |
Args: | |
extractor_mode (str): Operation mode of feature extractor. | |
Valid values are ``"group_norm"`` or ``"layer_norm"``. | |
If ``"group_norm"``, then a single normalization is applied | |
in the first convolution block. Otherwise, all the convolution | |
blocks will have layer normalization. | |
This option corresponds to ``extractor_mode`` from ``fairseq``. | |
extractor_conv_layer_config (list of integer tuples or None): | |
Configuration of convolution layers in feature extractor. | |
List of convolution configuration, | |
i.e. ``[(output_channel, kernel_size, stride), ...]`` | |
If ``None`` is provided, then the following default value is used. | |
.. code-block:: python | |
[ | |
(512, 10, 5), | |
(512, 3, 2), | |
(512, 3, 2), | |
(512, 3, 2), | |
(512, 3, 2), | |
(512, 2, 2), | |
(512, 2, 2), | |
] | |
This option corresponds to ``conv_feature_layers`` from ``fairseq``. | |
extractor_conv_bias (bool): | |
Whether to include bias term to each convolution operation. | |
This option corresponds to ``conv_bias`` from ``fairseq``. | |
encoder_embed_dim (int): | |
The dimension of embedding in encoder. | |
This option corresponds to ``encoder_embed_dim`` from ``fairseq``. | |
encoder_projection_dropout (float): | |
The dropout probability applied after the input feature is projected | |
to ``encoder_embed_dim``. | |
This option corresponds to ``dropout_input`` from ``fairseq``. | |
encoder_pos_conv_kernel (int): | |
The kernel size of convolutional positional embeddings. | |
This option corresponds to ``conv_pos`` from ``fairseq``. | |
encoder_pos_conv_groups (int): | |
The number of groups of convolutional positional embeddings. | |
This option corresponds to ``conv_pos_groups`` from ``fairseq``. | |
encoder_num_layers (int): | |
The number of self attention layers in transformer block. | |
This option corresponds to ``encoder_layers`` from ``fairseq``. | |
encoder_num_heads (int): | |
The number of heads in self attention layers. | |
This option corresponds to ``encoder_attention_heads`` from ``fairseq``. | |
encoder_attention_dropout (float): | |
The dropout probability applied after softmax in self-attention layer. | |
This option corresponds to ``attention_dropout`` from ``fairseq``. | |
encoder_ff_interm_features (int): | |
The dimension of hidden features in feed forward layer. | |
This option corresponds to ``encoder_ffn_embed_dim`` from ``fairseq``. | |
encoder_ff_interm_dropout (float): | |
The dropout probability applied in feedforward layer. | |
This option correspinds to ``activation_dropout`` from ``fairseq``. | |
encoder_dropout (float): | |
The dropout probability applied at the end of feed forward layer. | |
This option corresponds to ``dropout`` from ``fairseq``. | |
encoder_layer_norm_first (bool): | |
Control the order of layer norm in transformer layer and each encoder layer. | |
If True, in transformer layer, layer norm is applied before features are fed | |
to encoder layers. In encoder layer, two layer norms are applied before and after | |
self attention. | |
If False, in transformer layer, layer norm is applied after features are fed | |
to encoder layers. In encoder layer, two layer norms are applied after self | |
attention, before and after feed forward. | |
This option corresponds to ``layer_norm_first`` from ``fairseq``. | |
encoder_layer_drop (float): | |
Probability to drop each encoder layer during training. | |
This option corresponds to ``layerdrop`` from ``fairseq``. | |
aux_num_out (int or None): | |
When provided, attach an extra linear layer on top of encoder, which can be | |
used for fine-tuning. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
if extractor_conv_layer_config is None: | |
extractor_conv_layer_config = [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2 | |
feature_extractor = components._get_feature_extractor( | |
extractor_mode, extractor_conv_layer_config, extractor_conv_bias, | |
prune_conv_channels=extractor_prune_conv_channels, | |
) | |
encoder = components._get_encoder( | |
in_features=extractor_conv_layer_config[-1][0], | |
embed_dim=encoder_embed_dim, | |
dropout_input=encoder_projection_dropout, | |
pos_conv_kernel=encoder_pos_conv_kernel, | |
pos_conv_groups=encoder_pos_conv_groups, | |
num_layers=encoder_num_layers, | |
use_attention=encoder_use_attention, | |
use_feed_forward=encoder_use_feed_forward, | |
num_heads=encoder_num_heads, | |
head_dim=encoder_head_dim, | |
attention_dropout=encoder_attention_dropout, | |
ff_interm_features=encoder_ff_interm_features, | |
ff_interm_dropout=encoder_ff_interm_dropout, | |
dropout=encoder_dropout, | |
layer_norm_first=encoder_layer_norm_first, | |
layer_drop=encoder_layer_drop, | |
prune_attention_heads=encoder_prune_attention_heads, | |
prune_attention_layer=encoder_prune_attention_layer, | |
prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
aux = None | |
if aux_num_out is not None: | |
aux = torch.nn.Linear(in_features=encoder_embed_dim, out_features=aux_num_out) | |
return Wav2Vec2Model(normalize_waveform, feature_extractor, encoder, aux) | |
def wav2vec2_base( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.1, | |
encoder_ff_interm_dropout: float = 0.1, | |
encoder_dropout: float = 0.1, | |
encoder_layer_drop: float = 0.1, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "base" :class:`~torchaudio.models.Wav2Vec2Model` from *wav2vec 2.0* :cite:`baevski2020wav2vec` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="group_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=768, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=12, | |
encoder_num_heads=12, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=3072, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=False, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def wav2vec2_large( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.1, | |
encoder_ff_interm_dropout: float = 0.1, | |
encoder_dropout: float = 0.1, | |
encoder_layer_drop: float = 0.1, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "large" :class:`~torchaudio.models.Wav2Vec2Model` from *wav2vec 2.0* :cite:`baevski2020wav2vec` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="group_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=1024, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=24, | |
encoder_num_heads=16, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=4096, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=False, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def wav2vec2_large_lv60k( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.0, | |
encoder_ff_interm_dropout: float = 0.1, | |
encoder_dropout: float = 0.0, | |
encoder_layer_drop: float = 0.1, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "large lv-60k" :class:`~torchaudio.models.Wav2Vec2Model` from *wav2vec 2.0* :cite:`baevski2020wav2vec` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="layer_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=True, | |
encoder_embed_dim=1024, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=24, | |
encoder_num_heads=16, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=4096, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=True, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def hubert_base( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.1, | |
encoder_ff_interm_dropout: float = 0.0, | |
encoder_dropout: float = 0.1, | |
encoder_layer_drop: float = 0.05, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "base" :class:`HuBERT <torchaudio.models.Wav2Vec2Model>` from *HuBERT* :cite:`hsu2021hubert` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="group_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=768, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=12, | |
encoder_use_attention=[True] * 12, | |
encoder_use_feed_forward=[True] * 12, | |
encoder_num_heads=[12] * 12, | |
encoder_head_dim=64, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=[3072] * 12, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=False, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def hubert_large( | |
encoder_projection_dropout: float = 0.0, | |
encoder_attention_dropout: float = 0.0, | |
encoder_ff_interm_dropout: float = 0.0, | |
encoder_dropout: float = 0.0, | |
encoder_layer_drop: float = 0.0, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "large" :class:`HuBERT <torchaudio.models.Wav2Vec2Model>` from *HuBERT* :cite:`hsu2021hubert` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="layer_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=1024, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=24, | |
encoder_num_heads=16, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=4096, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=True, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def hubert_xlarge( | |
encoder_projection_dropout: float = 0.0, | |
encoder_attention_dropout: float = 0.0, | |
encoder_ff_interm_dropout: float = 0.0, | |
encoder_dropout: float = 0.0, | |
encoder_layer_drop: float = 0.0, | |
aux_num_out: Optional[int] = None, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds "extra large" :class:`HuBERT <torchaudio.models.Wav2Vec2Model>` from *HuBERT* :cite:`hsu2021hubert` | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" # noqa: E501 | |
return wav2vec2_model( | |
extractor_mode="layer_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=1280, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=48, | |
encoder_num_heads=16, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=5120, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=True, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
extractor_prune_conv_channels=extractor_prune_conv_channels, | |
encoder_prune_attention_heads=encoder_prune_attention_heads, | |
encoder_prune_attention_layer=encoder_prune_attention_layer, | |
encoder_prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
encoder_prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
def _init_hubert_pretrain_model(module): | |
if isinstance(module, components.LayerNorm): | |
torch.nn.init.kaiming_normal_(module.conv.weight) | |
elif isinstance(module, components.ConvolutionalPositionalEmbedding): | |
# normalize the weight to normal distribution. | |
std = math.sqrt(4.0 / (module.embed_dim * module.kernel_size)) | |
torch.nn.init.normal_(module.conv.weight, mean=0.0, std=std) | |
torch.nn.init.constant_(module.conv.bias, 0.0) | |
elif isinstance(module, components.SelfAttention): | |
# normalize the query, key, value, and out_proj parameters in self attention module. | |
torch.nn.init.xavier_uniform_(module.k_proj.weight, gain=1 / math.sqrt(2)) | |
torch.nn.init.xavier_uniform_(module.v_proj.weight, gain=1 / math.sqrt(2)) | |
torch.nn.init.xavier_uniform_(module.q_proj.weight, gain=1 / math.sqrt(2)) | |
torch.nn.init.xavier_uniform_(module.out_proj.weight) | |
torch.nn.init.constant_(module.out_proj.bias, 0.0) | |
elif isinstance(module, components.Transformer): | |
module.apply(components._init_transformer_params) | |
else: | |
pass | |
def wavlm_model( | |
extractor_mode: str, | |
extractor_conv_layer_config: Optional[List[Tuple[int, int, int]]], | |
extractor_conv_bias: bool, | |
encoder_embed_dim: int, | |
encoder_projection_dropout: float, | |
encoder_pos_conv_kernel: int, | |
encoder_pos_conv_groups: int, | |
encoder_num_layers: int, | |
encoder_use_attention: List[bool], | |
encoder_use_feed_forward: List[bool], | |
encoder_total_num_heads: List[int], | |
encoder_remaining_heads: List[List[int]], | |
encoder_num_buckets: int, | |
encoder_max_distance: int, | |
encoder_attention_dropout: float, | |
encoder_ff_interm_features: List[int], | |
encoder_ff_interm_dropout: float, | |
encoder_dropout: float, | |
encoder_layer_norm_first: bool, | |
encoder_layer_drop: float, | |
aux_num_out: Optional[int], | |
normalize_waveform: bool, | |
extractor_prune_conv_channels: bool = False, | |
encoder_prune_attention_heads: bool = False, | |
encoder_prune_attention_layer: bool = False, | |
encoder_prune_feed_forward_intermediate: bool = False, | |
encoder_prune_feed_forward_layer: bool = False, | |
) -> Wav2Vec2Model: | |
"""Builds custom WaveLM model :cite:`chen2022wavlm`. The architecture is compatible | |
with Wav2Vec2 model :cite:`baevski2020wav2vec`, and so the output object is | |
:class:`~torchaudio.models.Wav2Vec2Model`. Most of the arguments have the same meaning | |
as in :py:func:`wav2vec2_model` so please refer there for documentation. | |
Args: | |
extractor_mode (str): Operation mode of feature extractor. | |
See :py:func:`wav2vec2_model`. | |
extractor_conv_layer_config (list of integer tuples or None): | |
See :py:func:`wav2vec2_model`. | |
extractor_conv_bias (bool): | |
See :py:func:`wav2vec2_model`. | |
encoder_embed_dim (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_pos_conv_kernel (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_pos_conv_groups (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_num_layers (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_num_heads (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_num_buckets (int): | |
Number of buckets for relative position embedding. | |
encoder_max_distance (int): | |
Maximum distance for relative position embedding. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_features (int): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_norm_first (bool): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int or None): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" | |
if extractor_conv_layer_config is None: | |
extractor_conv_layer_config = [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2 | |
feature_extractor = components._get_feature_extractor( | |
extractor_mode, extractor_conv_layer_config, extractor_conv_bias, | |
prune_conv_channels=extractor_prune_conv_channels, | |
) | |
encoder = components._get_wavlm_encoder( | |
in_features=extractor_conv_layer_config[-1][0], | |
embed_dim=encoder_embed_dim, | |
dropout_input=encoder_projection_dropout, | |
pos_conv_kernel=encoder_pos_conv_kernel, | |
pos_conv_groups=encoder_pos_conv_groups, | |
num_layers=encoder_num_layers, | |
use_attention=encoder_use_attention, | |
use_feed_forward=encoder_use_feed_forward, | |
total_num_heads=encoder_total_num_heads, | |
remaining_heads=encoder_remaining_heads, | |
num_buckets=encoder_num_buckets, | |
max_distance=encoder_max_distance, | |
attention_dropout=encoder_attention_dropout, | |
ff_interm_features=encoder_ff_interm_features, | |
ff_interm_dropout=encoder_ff_interm_dropout, | |
dropout=encoder_dropout, | |
layer_norm_first=encoder_layer_norm_first, | |
layer_drop=encoder_layer_drop, | |
prune_attention_heads=encoder_prune_attention_heads, | |
prune_attention_layer=encoder_prune_attention_layer, | |
prune_feed_forward_intermediate=encoder_prune_feed_forward_intermediate, | |
prune_feed_forward_layer=encoder_prune_feed_forward_layer, | |
) | |
aux = None | |
if aux_num_out is not None: | |
aux = torch.nn.Linear(in_features=encoder_embed_dim, out_features=aux_num_out) | |
return Wav2Vec2Model(normalize_waveform, feature_extractor, encoder, aux) | |
def wavlm_base( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.1, | |
encoder_ff_interm_dropout: float = 0.1, | |
encoder_dropout: float = 0.1, | |
encoder_layer_drop: float = 0.1, | |
aux_num_out: Optional[int] = None, | |
) -> Wav2Vec2Model: | |
"""Builds "base" WaveLM model :cite:`chen2022wavlm`. The architecture is compatible | |
with Wav2Vec2 model :cite:`baevski2020wav2vec`, and so the output class is | |
:class:`~torchaudio.models.Wav2Vec2Model`. | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" | |
return wavlm_model( | |
extractor_mode="group_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=768, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=12, | |
encoder_num_heads=12, | |
encoder_num_buckets=320, | |
encoder_max_distance=800, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=3072, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=False, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
) | |
def wavlm_large( | |
encoder_projection_dropout: float = 0.1, | |
encoder_attention_dropout: float = 0.1, | |
encoder_ff_interm_dropout: float = 0.0, | |
encoder_dropout: float = 0.1, | |
encoder_layer_drop: float = 0.1, | |
aux_num_out: Optional[int] = None, | |
) -> Wav2Vec2Model: | |
"""Builds "large" WaveLM model :cite:`chen2022wavlm`. The architecture is compatible | |
with Wav2Vec2 model :cite:`baevski2020wav2vec`, and so the output class is | |
:class:`~torchaudio.models.Wav2Vec2Model`. | |
Args: | |
encoder_projection_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_attention_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_ff_interm_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_dropout (float): | |
See :py:func:`wav2vec2_model`. | |
encoder_layer_drop (float): | |
See :py:func:`wav2vec2_model`. | |
aux_num_out (int, optional): | |
See :py:func:`wav2vec2_model`. | |
Returns: | |
Wav2Vec2Model: | |
The resulting model. | |
""" | |
return wavlm_model( | |
extractor_mode="layer_norm", | |
extractor_conv_layer_config=None, | |
extractor_conv_bias=False, | |
encoder_embed_dim=1024, | |
encoder_projection_dropout=encoder_projection_dropout, | |
encoder_pos_conv_kernel=128, | |
encoder_pos_conv_groups=16, | |
encoder_num_layers=24, | |
encoder_num_heads=16, | |
encoder_num_buckets=320, | |
encoder_max_distance=800, | |
encoder_attention_dropout=encoder_attention_dropout, | |
encoder_ff_interm_features=4096, | |
encoder_ff_interm_dropout=encoder_ff_interm_dropout, | |
encoder_dropout=encoder_dropout, | |
encoder_layer_norm_first=True, | |
encoder_layer_drop=encoder_layer_drop, | |
aux_num_out=aux_num_out, | |
) | |