fixes
Browse files
app.py
CHANGED
@@ -1,6 +1,77 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
hf_token = os.environ.get("HF_TOKEN", None)
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from torchvision.transforms.functional import to_tensor, normalize
|
7 |
+
from transformers import SegformerForSemanticSegmentation
|
8 |
|
9 |
hf_token = os.environ.get("HF_TOKEN", None)
|
10 |
+
device = torch.device("cpu")
|
11 |
|
12 |
+
label2id = {"background": 0, "skin": 1, "hair": 2, "clothes": 3, "accessories": 4}
|
13 |
+
id2label = {v: k for k, v in label2id.items()}
|
14 |
+
colors = {
|
15 |
+
"background": (40, 40, 40),
|
16 |
+
"skin": (255, 178, 127),
|
17 |
+
"hair": (139, 69, 19),
|
18 |
+
"clothes": (100, 149, 237),
|
19 |
+
"accessories": (255, 215, 0),
|
20 |
+
}
|
21 |
+
|
22 |
+
model = SegformerForSemanticSegmentation.from_pretrained(
|
23 |
+
"neuratech-ai/person_segmentation_v3",
|
24 |
+
token=hf_token,
|
25 |
+
ignore_mismatched_sizes=True,
|
26 |
+
num_labels=len(label2id),
|
27 |
+
id2label=id2label,
|
28 |
+
label2id=label2id,
|
29 |
+
)
|
30 |
+
model.eval()
|
31 |
+
model.to(device)
|
32 |
+
|
33 |
+
|
34 |
+
def preds_to_rgb(preds):
|
35 |
+
preds_rgb = np.zeros((preds.shape[0], preds.shape[1], 3), dtype=np.uint8)
|
36 |
+
|
37 |
+
for class_name, class_id in label2id.items():
|
38 |
+
preds_rgb[preds == class_id] = colors[class_name]
|
39 |
+
|
40 |
+
return preds_rgb
|
41 |
+
|
42 |
+
|
43 |
+
def query_image(img):
|
44 |
+
img = Image.fromarray(img)
|
45 |
+
scale = 1024 / min(img.size)
|
46 |
+
img = img.resize(
|
47 |
+
(int(img.size[0] * scale), int(img.size[1] * scale)), Image.LANCZOS
|
48 |
+
)
|
49 |
+
|
50 |
+
img = normalize(
|
51 |
+
to_tensor(img),
|
52 |
+
mean=(0.485, 0.456, 0.406),
|
53 |
+
std=(0.229, 0.224, 0.225),
|
54 |
+
)
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model(img.unsqueeze(0))
|
58 |
+
|
59 |
+
preds = outputs.logits.cpu()
|
60 |
+
w, h = preds.shape[-2:]
|
61 |
+
preds = torch.nn.functional.interpolate(
|
62 |
+
preds, size=(w * 4, h * 4), mode="bilinear", align_corners=False
|
63 |
+
)
|
64 |
+
results = torch.argmax(preds, dim=1).numpy()[0]
|
65 |
+
results = preds_to_rgb(results)
|
66 |
+
return Image.fromarray(results)
|
67 |
+
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
query_image,
|
71 |
+
inputs=[gr.Image()],
|
72 |
+
outputs="image",
|
73 |
+
title="neuratech-ai person segmentation v3",
|
74 |
+
examples=[[]],
|
75 |
+
)
|
76 |
+
|
77 |
+
demo.launch()
|