Spaces:
Sleeping
Sleeping
Commit
·
150947d
1
Parent(s):
0d9095f
fix for gemma
Browse files- bp_phi/__pycache__/llm_iface.cpython-310.pyc +0 -0
- repo.txt +35 -26
bp_phi/__pycache__/llm_iface.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/llm_iface.cpython-310.pyc and b/bp_phi/__pycache__/llm_iface.cpython-310.pyc differ
|
|
|
repo.txt
CHANGED
|
@@ -181,7 +181,7 @@ import torch, random, numpy as np
|
|
| 181 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 182 |
from typing import List, Optional
|
| 183 |
|
| 184 |
-
DEBUG = 1
|
| 185 |
|
| 186 |
def dbg(*args):
|
| 187 |
if DEBUG:
|
|
@@ -192,54 +192,63 @@ class LLM:
|
|
| 192 |
self.model_id = model_id
|
| 193 |
self.seed = seed
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
set_seed(seed)
|
|
|
|
| 196 |
token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
| 197 |
|
| 198 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
| 199 |
-
if self.tokenizer.pad_token is None:
|
| 200 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 201 |
-
|
| 202 |
kwargs = {}
|
| 203 |
-
if torch.
|
| 204 |
-
|
| 205 |
|
| 206 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 207 |
self.model.eval()
|
|
|
|
| 208 |
|
| 209 |
-
dbg(f"Loaded model: {model_id}")
|
| 210 |
|
| 211 |
-
def
|
|
|
|
|
|
|
| 212 |
set_seed(self.seed)
|
| 213 |
|
| 214 |
-
|
| 215 |
-
{"role": "
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 220 |
|
| 221 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 222 |
input_token_length = inputs.input_ids.shape[1]
|
| 223 |
|
| 224 |
with torch.no_grad():
|
| 225 |
-
terminators = [
|
| 226 |
-
self.tokenizer.eos_token_id,
|
| 227 |
-
self.tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in self.tokenizer.additional_special_tokens else self.tokenizer.eos_token_id
|
| 228 |
-
]
|
| 229 |
-
|
| 230 |
out = self.model.generate(
|
| 231 |
**inputs,
|
| 232 |
-
do_sample=(temperature > 0
|
| 233 |
-
temperature=
|
| 234 |
-
|
| 235 |
-
|
|
|
|
| 236 |
pad_token_id=self.tokenizer.eos_token_id
|
| 237 |
)
|
| 238 |
|
| 239 |
-
|
|
|
|
| 240 |
|
| 241 |
-
dbg("Cleaned
|
| 242 |
-
return
|
| 243 |
|
| 244 |
[File Ends] bp_phi/llm_iface.py
|
| 245 |
|
|
|
|
| 181 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 182 |
from typing import List, Optional
|
| 183 |
|
| 184 |
+
DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"
|
| 185 |
|
| 186 |
def dbg(*args):
|
| 187 |
if DEBUG:
|
|
|
|
| 192 |
self.model_id = model_id
|
| 193 |
self.seed = seed
|
| 194 |
|
| 195 |
+
# Set all seeds for reproducibility
|
| 196 |
+
random.seed(seed)
|
| 197 |
+
np.random.seed(seed)
|
| 198 |
+
torch.manual_seed(seed)
|
| 199 |
+
if torch.cuda.is_available():
|
| 200 |
+
torch.cuda.manual_seed_all(seed)
|
| 201 |
+
try:
|
| 202 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 203 |
+
except Exception as e:
|
| 204 |
+
dbg(f"Could not set deterministic algorithms: {e}")
|
| 205 |
set_seed(seed)
|
| 206 |
+
|
| 207 |
token = os.environ.get("HF_TOKEN")
|
| 208 |
+
if not token and ("gemma-3" in model_id or "llama" in model_id):
|
| 209 |
+
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
|
| 210 |
|
| 211 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
|
|
|
|
|
|
|
|
|
| 212 |
kwargs = {}
|
| 213 |
+
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
|
| 214 |
+
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
|
| 215 |
|
| 216 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 217 |
self.model.eval()
|
| 218 |
+
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
|
| 219 |
|
| 220 |
+
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
|
| 221 |
|
| 222 |
+
def generate_json(self, system_prompt: str, user_prompt: str,
|
| 223 |
+
max_new_tokens: int = 256, temperature: float = 0.7,
|
| 224 |
+
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
|
| 225 |
set_seed(self.seed)
|
| 226 |
|
| 227 |
+
if self.is_instruction_tuned:
|
| 228 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
| 229 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 230 |
+
else:
|
| 231 |
+
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
|
|
|
|
| 232 |
|
| 233 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 234 |
input_token_length = inputs.input_ids.shape[1]
|
| 235 |
|
| 236 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
out = self.model.generate(
|
| 238 |
**inputs,
|
| 239 |
+
do_sample=(temperature > 0),
|
| 240 |
+
temperature=temperature,
|
| 241 |
+
top_p=top_p,
|
| 242 |
+
max_new_tokens=max_new_tokens,
|
| 243 |
+
num_return_sequences=num_return_sequences,
|
| 244 |
pad_token_id=self.tokenizer.eos_token_id
|
| 245 |
)
|
| 246 |
|
| 247 |
+
new_tokens = out[:, input_token_length:]
|
| 248 |
+
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
| 249 |
|
| 250 |
+
dbg("Cleaned model completions:", completions)
|
| 251 |
+
return completions
|
| 252 |
|
| 253 |
[File Ends] bp_phi/llm_iface.py
|
| 254 |
|