Spaces:
Sleeping
Sleeping
Commit
·
024ef47
1
Parent(s):
5708c30
cs 2.0
Browse files- app.py +65 -80
- cognitive_mapping_probe/auto_experiment.py +79 -0
- cognitive_mapping_probe/orchestrator_seismograph.py +26 -32
- tests/test_app_logic.py +7 -17
- tests/test_integration.py +10 -20
app.py
CHANGED
|
@@ -1,102 +1,87 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import traceback
|
| 4 |
-
import sys
|
| 5 |
|
| 6 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
|
|
|
| 7 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 8 |
from cognitive_mapping_probe.utils import dbg
|
| 9 |
|
| 10 |
-
|
| 11 |
-
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(
|
| 12 |
-
body_background_fill="#f0f4f9",
|
| 13 |
-
block_background_fill="white",
|
| 14 |
-
)
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
|
| 18 |
-
prompt_type: str,
|
| 19 |
-
seed: int,
|
| 20 |
-
num_steps: int,
|
| 21 |
-
concept_to_inject: str,
|
| 22 |
-
injection_strength: float,
|
| 23 |
-
progress=gr.Progress(track_tqdm=True)
|
| 24 |
-
):
|
| 25 |
-
"""
|
| 26 |
-
Führt die seismische Analyse durch, inklusive der optionalen Konzeptinjektion.
|
| 27 |
-
"""
|
| 28 |
try:
|
| 29 |
-
results = run_seismic_analysis(
|
| 30 |
-
model_id=model_id,
|
| 31 |
-
prompt_type=prompt_type,
|
| 32 |
-
seed=int(seed),
|
| 33 |
-
num_steps=int(num_steps),
|
| 34 |
-
concept_to_inject=concept_to_inject,
|
| 35 |
-
injection_strength=float(injection_strength),
|
| 36 |
-
progress_callback=progress
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
verdict = results.get("verdict", "Analysis complete.")
|
| 40 |
stats = results.get("stats", {})
|
| 41 |
deltas = results.get("state_deltas", [])
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"State Change (Delta)": deltas
|
| 46 |
-
})
|
| 47 |
-
|
| 48 |
-
stats_md = f"### Statistical Signature\n"
|
| 49 |
-
stats_md += f"- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n"
|
| 50 |
-
stats_md += f"- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n"
|
| 51 |
-
stats_md += f"- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 52 |
-
|
| 53 |
-
return f"{verdict}\n\n{stats_md}", df, results
|
| 54 |
-
|
| 55 |
except Exception:
|
| 56 |
-
|
| 57 |
-
return f"### ❌ Analysis Failed\nAn unexpected error occurred:\n\n```\n{error_str}\n```", pd.DataFrame(), {}
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
with gr.Column(scale=1):
|
| 67 |
-
gr.Markdown("### 1. General Parameters")
|
| 68 |
-
model_id_input = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 69 |
-
prompt_type_input = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
| 70 |
-
seed_input = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 71 |
-
num_steps_input = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
strength_input = gr.Slider(0.0, 5.0, 1.0, step=0.1, label="Injection Strength")
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
x="Internal Step",
|
| 84 |
-
y="State Change (Delta)",
|
| 85 |
-
title="Internal State Dynamics (Cognitive EKG)",
|
| 86 |
-
show_label=True,
|
| 87 |
-
height=400,
|
| 88 |
)
|
| 89 |
-
with gr.Accordion("Raw JSON Output", open=False):
|
| 90 |
-
raw_json_output = gr.JSON()
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
-
print("="*80)
|
| 100 |
-
print("🔬 COGNITIVE SEISMOGRAPH 2.0 (MODULATION-ENABLED) INITIALIZED")
|
| 101 |
-
print("="*80)
|
| 102 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import traceback
|
|
|
|
| 4 |
|
| 5 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
| 6 |
+
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
|
| 7 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 8 |
from cognitive_mapping_probe.utils import dbg
|
| 9 |
|
| 10 |
+
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 13 |
+
"""Wrapper für ein einzelnes manuelles Experiment."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
try:
|
| 15 |
+
results = run_seismic_analysis(*args, progress_callback=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
stats = results.get("stats", {})
|
| 17 |
deltas = results.get("state_deltas", [])
|
| 18 |
+
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 19 |
+
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 20 |
+
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
except Exception:
|
| 22 |
+
return f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```", pd.DataFrame(), {}
|
|
|
|
| 23 |
|
| 24 |
+
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 25 |
+
"""Wrapper für die automatisierte Experiment-Suite."""
|
| 26 |
+
try:
|
| 27 |
+
summary_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 28 |
+
return summary_df, all_results
|
| 29 |
+
except Exception:
|
| 30 |
+
return pd.DataFrame(), f"### ❌ Auto-Experiment Failed\n```\n{traceback.format_exc()}\n```"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.1") as demo:
|
| 33 |
+
gr.Markdown("# 🧠 Cognitive Seismograph 2.1: Automated Experiment Suite")
|
|
|
|
| 34 |
|
| 35 |
+
with gr.Tabs():
|
| 36 |
+
with gr.TabItem("🔬 Manual Single Run"):
|
| 37 |
+
gr.Markdown("Führe ein einzelnes Experiment mit manuellen Parametern durch, um Hypothesen zu explorieren.")
|
| 38 |
+
with gr.Row(variant='panel'):
|
| 39 |
+
with gr.Column(scale=1):
|
| 40 |
+
gr.Markdown("### 1. General Parameters")
|
| 41 |
+
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 42 |
+
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
| 43 |
+
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 44 |
+
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
|
| 45 |
+
gr.Markdown("### 2. Modulation Parameters")
|
| 46 |
+
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness' (leave blank for baseline)")
|
| 47 |
+
manual_strength = gr.Slider(0.0, 5.0, 1.0, step=0.1, label="Injection Strength")
|
| 48 |
+
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
|
| 49 |
+
with gr.Column(scale=2):
|
| 50 |
+
gr.Markdown("### Single Run Results")
|
| 51 |
+
manual_verdict = gr.Markdown("Die Analyse erscheint hier.")
|
| 52 |
+
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400)
|
| 53 |
+
with gr.Accordion("Raw JSON Output", open=False):
|
| 54 |
+
manual_raw_json = gr.JSON()
|
| 55 |
|
| 56 |
+
manual_run_btn.click(
|
| 57 |
+
fn=run_single_analysis_display,
|
| 58 |
+
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
| 59 |
+
outputs=[manual_verdict, manual_plot, manual_raw_json]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
with gr.TabItem("🚀 Automated Suite"):
|
| 63 |
+
gr.Markdown("Führe eine vordefinierte, kuratierte Reihe von Experimenten durch, um Hypothesen systematisch zu testen.")
|
| 64 |
+
with gr.Row(variant='panel'):
|
| 65 |
+
with gr.Column(scale=1):
|
| 66 |
+
gr.Markdown("### Auto-Experiment Parameters")
|
| 67 |
+
auto_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 68 |
+
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
|
| 69 |
+
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 70 |
+
auto_experiment_name = gr.Dropdown(choices=list(get_curated_experiments().keys()), value="Calm vs. Chaos", label="Curated Experiment Protocol")
|
| 71 |
+
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
| 72 |
+
with gr.Column(scale=2):
|
| 73 |
+
gr.Markdown("### Suite Results Summary")
|
| 74 |
+
# KORREKTUR: Das 'height'-Argument wird entfernt, um Kompatibilität
|
| 75 |
+
# mit verschiedenen Gradio-Versionen sicherzustellen.
|
| 76 |
+
auto_summary_df = gr.DataFrame(label="Comparative Results", wrap=True)
|
| 77 |
+
with gr.Accordion("Raw JSON for all runs", open=False):
|
| 78 |
+
auto_raw_json = gr.JSON()
|
| 79 |
+
|
| 80 |
+
auto_run_btn.click(
|
| 81 |
+
fn=run_auto_suite_display,
|
| 82 |
+
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
|
| 83 |
+
outputs=[auto_summary_df, auto_raw_json]
|
| 84 |
+
)
|
| 85 |
|
| 86 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 87 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
cognitive_mapping_probe/auto_experiment.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from typing import Dict, List, Tuple
|
| 3 |
+
|
| 4 |
+
from .orchestrator_seismograph import run_seismic_analysis
|
| 5 |
+
from .utils import dbg
|
| 6 |
+
|
| 7 |
+
def get_curated_experiments() -> Dict[str, List[Dict]]:
|
| 8 |
+
"""
|
| 9 |
+
Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle.
|
| 10 |
+
Jedes Protokoll ist eine Liste von einzelnen Läufen, die verglichen werden sollen.
|
| 11 |
+
"""
|
| 12 |
+
experiments = {
|
| 13 |
+
"Calm vs. Chaos": [
|
| 14 |
+
{"label": "Baseline (Chaos)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
|
| 15 |
+
{"label": "Modulation: Calmness", "prompt_type": "resonance_prompt", "concept": "calmness, serenity, peace", "strength": 1.5},
|
| 16 |
+
{"label": "Modulation: Chaos", "prompt_type": "resonance_prompt", "concept": "chaos, storm, anger, noise", "strength": 1.5},
|
| 17 |
+
{"label": "Control (Stable)", "prompt_type": "control_long_prose", "concept": "", "strength": 0.0},
|
| 18 |
+
],
|
| 19 |
+
"Dose-Response (Calmness)": [
|
| 20 |
+
{"label": "Strength 0.0", "prompt_type": "resonance_prompt", "concept": "calmness", "strength": 0.0},
|
| 21 |
+
{"label": "Strength 0.5", "prompt_type": "resonance_prompt", "concept": "calmness", "strength": 0.5},
|
| 22 |
+
{"label": "Strength 1.0", "prompt_type": "resonance_prompt", "concept": "calmness", "strength": 1.0},
|
| 23 |
+
{"label": "Strength 2.0", "prompt_type": "resonance_prompt", "concept": "calmness", "strength": 2.0},
|
| 24 |
+
{"label": "Strength 3.0", "prompt_type": "resonance_prompt", "concept": "calmness", "strength": 3.0},
|
| 25 |
+
]
|
| 26 |
+
}
|
| 27 |
+
return experiments
|
| 28 |
+
|
| 29 |
+
def run_auto_suite(
|
| 30 |
+
model_id: str,
|
| 31 |
+
num_steps: int,
|
| 32 |
+
seed: int,
|
| 33 |
+
experiment_name: str,
|
| 34 |
+
progress_callback
|
| 35 |
+
) -> Tuple[pd.DataFrame, Dict]:
|
| 36 |
+
"""
|
| 37 |
+
Führt eine vollständige, kuratierte Experiment-Suite aus.
|
| 38 |
+
Iteriert über die definierten Läufe, sammelt die Ergebnisse und erstellt einen Vergleichsbericht.
|
| 39 |
+
"""
|
| 40 |
+
all_experiments = get_curated_experiments()
|
| 41 |
+
protocol = all_experiments.get(experiment_name)
|
| 42 |
+
if not protocol:
|
| 43 |
+
raise ValueError(f"Experiment protocol '{experiment_name}' not found.")
|
| 44 |
+
|
| 45 |
+
all_results = {}
|
| 46 |
+
summary_data = []
|
| 47 |
+
|
| 48 |
+
total_runs = len(protocol)
|
| 49 |
+
for i, run_spec in enumerate(protocol):
|
| 50 |
+
label = run_spec["label"]
|
| 51 |
+
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{total_runs}) ---")
|
| 52 |
+
|
| 53 |
+
# Der `run_seismic_analysis` Orchestrator wird für jeden Schritt aufgerufen
|
| 54 |
+
results = run_seismic_analysis(
|
| 55 |
+
model_id=model_id,
|
| 56 |
+
prompt_type=run_spec["prompt_type"],
|
| 57 |
+
seed=seed,
|
| 58 |
+
num_steps=num_steps,
|
| 59 |
+
concept_to_inject=run_spec["concept"],
|
| 60 |
+
injection_strength=run_spec["strength"],
|
| 61 |
+
progress_callback=progress_callback
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
all_results[label] = results
|
| 65 |
+
stats = results.get("stats", {})
|
| 66 |
+
|
| 67 |
+
# Sammle die wichtigsten Metriken für die Vergleichstabelle
|
| 68 |
+
summary_data.append({
|
| 69 |
+
"Experiment": label,
|
| 70 |
+
"Prompt Type": run_spec["prompt_type"],
|
| 71 |
+
"Concept": run_spec["concept"] if run_spec["concept"] else "None",
|
| 72 |
+
"Strength": run_spec["strength"],
|
| 73 |
+
"Mean Delta": stats.get("mean_delta"),
|
| 74 |
+
"Std Dev Delta": stats.get("std_delta"),
|
| 75 |
+
"Max Delta": stats.get("max_delta"),
|
| 76 |
+
})
|
| 77 |
+
|
| 78 |
+
summary_df = pd.DataFrame(summary_data)
|
| 79 |
+
return summary_df, all_results
|
cognitive_mapping_probe/orchestrator_seismograph.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
-
from typing import Dict, Any
|
| 4 |
|
| 5 |
from .llm_iface import get_or_load_model
|
| 6 |
from .resonance_seismograph import run_silent_cogitation_seismic
|
| 7 |
-
# WIEDERHERGESTELLTER IMPORT
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .utils import dbg
|
| 10 |
|
|
@@ -15,60 +14,55 @@ def run_seismic_analysis(
|
|
| 15 |
num_steps: int,
|
| 16 |
concept_to_inject: str,
|
| 17 |
injection_strength: float,
|
| 18 |
-
progress_callback
|
|
|
|
| 19 |
) -> Dict[str, Any]:
|
| 20 |
"""
|
| 21 |
-
Orchestriert
|
| 22 |
-
|
| 23 |
"""
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# Lade den Konzeptvektor, falls ein Konzept angegeben wurde
|
| 28 |
injection_vector = None
|
| 29 |
if concept_to_inject and concept_to_inject.strip():
|
| 30 |
-
progress_callback(0.2, desc=f"
|
| 31 |
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 32 |
|
| 33 |
-
progress_callback(0.3, desc=f"
|
| 34 |
|
| 35 |
state_deltas = run_silent_cogitation_seismic(
|
| 36 |
llm=llm,
|
| 37 |
prompt_type=prompt_type,
|
| 38 |
num_steps=num_steps,
|
| 39 |
temperature=0.1,
|
| 40 |
-
# Übergebe die neuen Parameter an den Resonanz-Loop
|
| 41 |
injection_vector=injection_vector,
|
| 42 |
injection_strength=injection_strength
|
| 43 |
)
|
| 44 |
|
| 45 |
-
progress_callback(0.9, desc="Analyzing
|
| 46 |
|
| 47 |
if state_deltas:
|
| 48 |
deltas_np = np.array(state_deltas)
|
| 49 |
-
stats = {
|
| 50 |
-
|
| 51 |
-
"std_delta": float(np.std(deltas_np)),
|
| 52 |
-
"max_delta": float(np.max(deltas_np)),
|
| 53 |
-
"min_delta": float(np.min(deltas_np)),
|
| 54 |
-
}
|
| 55 |
-
verdict = f"### ✅ Seismic Analysis Complete\nDie interne Dynamik für '{prompt_type}' wurde über {len(deltas_np)} Schritte aufgezeichnet."
|
| 56 |
if injection_vector is not None:
|
| 57 |
-
verdict += f"\
|
| 58 |
else:
|
| 59 |
-
stats = {}
|
| 60 |
-
verdict = "### ⚠️ Analysis Warning\nKeine Zustandsänderungen aufgezeichnet."
|
| 61 |
-
|
| 62 |
-
results = {
|
| 63 |
-
"verdict": verdict,
|
| 64 |
-
"stats": stats,
|
| 65 |
-
"state_deltas": state_deltas
|
| 66 |
-
}
|
| 67 |
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
-
if
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
return results
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
+
from typing import Dict, Any, Optional
|
| 4 |
|
| 5 |
from .llm_iface import get_or_load_model
|
| 6 |
from .resonance_seismograph import run_silent_cogitation_seismic
|
|
|
|
| 7 |
from .concepts import get_concept_vector
|
| 8 |
from .utils import dbg
|
| 9 |
|
|
|
|
| 14 |
num_steps: int,
|
| 15 |
concept_to_inject: str,
|
| 16 |
injection_strength: float,
|
| 17 |
+
progress_callback,
|
| 18 |
+
llm_instance: Optional[Any] = None # Ermöglicht Wiederverwendung des Modells
|
| 19 |
) -> Dict[str, Any]:
|
| 20 |
"""
|
| 21 |
+
Orchestriert eine einzelne seismische Analyse. Kann optional eine bestehende
|
| 22 |
+
LLM-Instanz wiederverwenden, um das Neuladen in automatisierten Suiten zu beschleunigen.
|
| 23 |
"""
|
| 24 |
+
# Lade das Modell nur, wenn keine Instanz übergeben wurde
|
| 25 |
+
if llm_instance is None:
|
| 26 |
+
progress_callback(0.1, desc="Loading model...")
|
| 27 |
+
llm = get_or_load_model(model_id, seed)
|
| 28 |
+
created_llm = True
|
| 29 |
+
else:
|
| 30 |
+
llm = llm_instance
|
| 31 |
+
llm.set_all_seeds(seed) # Setze den Seed für diesen spezifischen Lauf
|
| 32 |
+
created_llm = False
|
| 33 |
|
|
|
|
| 34 |
injection_vector = None
|
| 35 |
if concept_to_inject and concept_to_inject.strip():
|
| 36 |
+
if not created_llm: progress_callback(0.2, desc=f"Vectorizing '{concept_to_inject}'...")
|
| 37 |
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 38 |
|
| 39 |
+
if not created_llm: progress_callback(0.3, desc=f"Recording dynamics...")
|
| 40 |
|
| 41 |
state_deltas = run_silent_cogitation_seismic(
|
| 42 |
llm=llm,
|
| 43 |
prompt_type=prompt_type,
|
| 44 |
num_steps=num_steps,
|
| 45 |
temperature=0.1,
|
|
|
|
| 46 |
injection_vector=injection_vector,
|
| 47 |
injection_strength=injection_strength
|
| 48 |
)
|
| 49 |
|
| 50 |
+
if not created_llm: progress_callback(0.9, desc="Analyzing...")
|
| 51 |
|
| 52 |
if state_deltas:
|
| 53 |
deltas_np = np.array(state_deltas)
|
| 54 |
+
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)), "min_delta": float(np.min(deltas_np)), }
|
| 55 |
+
verdict = f"### ✅ Seismic Analysis Complete\nRecorded {len(deltas_np)} steps for '{prompt_type}'."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
if injection_vector is not None:
|
| 57 |
+
verdict += f"\nModulated with **'{concept_to_inject}'** at strength **{injection_strength:.2f}**."
|
| 58 |
else:
|
| 59 |
+
stats, verdict = {}, "### ⚠️ Analysis Warning\nNo state changes recorded."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
results = { "verdict": verdict, "stats": stats, "state_deltas": state_deltas }
|
| 62 |
|
| 63 |
+
# Gib das Modell nur frei, wenn es in dieser Funktion erstellt wurde
|
| 64 |
+
if created_llm:
|
| 65 |
+
del llm
|
| 66 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 67 |
|
| 68 |
return results
|
tests/test_app_logic.py
CHANGED
|
@@ -1,16 +1,13 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
-
# Importiere
|
| 5 |
-
from app import
|
| 6 |
|
| 7 |
-
def
|
| 8 |
"""
|
| 9 |
-
Testet die Datenverarbeitungs- und UI-Formatierungslogik
|
| 10 |
-
Wir mocken die teure `run_seismic_analysis`-Funktion, um uns nur auf die
|
| 11 |
-
Logik von `run_and_display` zu konzentrieren.
|
| 12 |
"""
|
| 13 |
-
# 1. Definiere die Schein-Ausgabe, die `run_seismic_analysis` zurückgeben soll
|
| 14 |
mock_results = {
|
| 15 |
"verdict": "Mock Verdict",
|
| 16 |
"stats": { "mean_delta": 0.5, "std_delta": 0.1, "max_delta": 1.0, },
|
|
@@ -20,18 +17,11 @@ def test_run_and_display_logic(mocker):
|
|
| 20 |
|
| 21 |
mock_progress = mocker.MagicMock()
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
verdict_md, plot_df, raw_json =
|
| 25 |
-
|
| 26 |
-
prompt_type="mock_prompt",
|
| 27 |
-
seed=42,
|
| 28 |
-
num_steps=3,
|
| 29 |
-
concept_to_inject="", # Fehlendes Argument hinzugefügt
|
| 30 |
-
injection_strength=0.0, # Fehlendes Argument hinzugefügt
|
| 31 |
-
progress=mock_progress
|
| 32 |
)
|
| 33 |
|
| 34 |
-
# 3. Validiere die Ausgaben
|
| 35 |
assert "Mock Verdict" in verdict_md
|
| 36 |
assert "0.5000" in verdict_md
|
| 37 |
assert isinstance(plot_df, pd.DataFrame)
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
+
# KORREKTUR: Importiere den neuen, korrekten Funktionsnamen
|
| 5 |
+
from app import run_single_analysis_display
|
| 6 |
|
| 7 |
+
def test_run_single_analysis_display_logic(mocker):
|
| 8 |
"""
|
| 9 |
+
Testet die Datenverarbeitungs- und UI-Formatierungslogik der Einzel-Analyse.
|
|
|
|
|
|
|
| 10 |
"""
|
|
|
|
| 11 |
mock_results = {
|
| 12 |
"verdict": "Mock Verdict",
|
| 13 |
"stats": { "mean_delta": 0.5, "std_delta": 0.1, "max_delta": 1.0, },
|
|
|
|
| 17 |
|
| 18 |
mock_progress = mocker.MagicMock()
|
| 19 |
|
| 20 |
+
# Rufe die umbenannte Funktion mit den korrekten Argumenten auf
|
| 21 |
+
verdict_md, plot_df, raw_json = run_single_analysis_display(
|
| 22 |
+
"mock_model", "mock_prompt", 42, 3, "", 0.0, progress=mock_progress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
|
|
|
|
| 25 |
assert "Mock Verdict" in verdict_md
|
| 26 |
assert "0.5000" in verdict_md
|
| 27 |
assert isinstance(plot_df, pd.DataFrame)
|
tests/test_integration.py
CHANGED
|
@@ -1,46 +1,36 @@
|
|
| 1 |
import pytest
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
-
# Importiere
|
| 5 |
-
from app import
|
| 6 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
| 7 |
|
| 8 |
def test_end_to_end_with_mock_llm(mock_llm, mocker):
|
| 9 |
"""
|
| 10 |
-
Ein End-to-End-Integrationstest, der den gesamten Datenfluss
|
| 11 |
-
über den Orchestrator bis zum (gemockten) LLM validiert.
|
| 12 |
"""
|
| 13 |
-
# 1. Führe den Orchestrator mit dem `mock_llm`
|
| 14 |
results = run_seismic_analysis(
|
| 15 |
model_id="mock_model",
|
| 16 |
prompt_type="control_long_prose",
|
| 17 |
seed=42,
|
| 18 |
num_steps=5,
|
| 19 |
-
concept_to_inject="test_concept",
|
| 20 |
-
injection_strength=1.0,
|
| 21 |
progress_callback=mocker.MagicMock()
|
| 22 |
)
|
| 23 |
|
| 24 |
-
# ASSERT 1: Überprüfe, ob der Orchestrator plausible Ergebnisse liefert
|
| 25 |
assert "stats" in results
|
| 26 |
assert len(results["state_deltas"]) == 5
|
| 27 |
-
assert results["stats"]["mean_delta"] > 0
|
| 28 |
|
| 29 |
-
# 2. Mocke
|
| 30 |
mocker.patch('app.run_seismic_analysis', return_value=results)
|
| 31 |
|
| 32 |
-
# 3. Führe die App-Logik
|
| 33 |
-
_, plot_df, _ =
|
| 34 |
-
|
| 35 |
-
prompt_type="control_long_prose",
|
| 36 |
-
seed=42,
|
| 37 |
-
num_steps=5,
|
| 38 |
-
concept_to_inject="test_concept", # Argument hinzugefügt
|
| 39 |
-
injection_strength=1.0, # Argument hinzugefügt
|
| 40 |
-
progress=mocker.MagicMock()
|
| 41 |
)
|
| 42 |
|
| 43 |
-
# ASSERT 2: Überprüfe, ob die App-Logik die Daten korrekt verarbeitet hat
|
| 44 |
assert isinstance(plot_df, pd.DataFrame)
|
| 45 |
assert len(plot_df) == 5
|
| 46 |
assert "State Change (Delta)" in plot_df.columns
|
|
|
|
| 1 |
import pytest
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
+
# KORREKTUR: Importiere den neuen, korrekten Funktionsnamen
|
| 5 |
+
from app import run_single_analysis_display
|
| 6 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
| 7 |
|
| 8 |
def test_end_to_end_with_mock_llm(mock_llm, mocker):
|
| 9 |
"""
|
| 10 |
+
Ein End-to-End-Integrationstest, der den gesamten Datenfluss validiert.
|
|
|
|
| 11 |
"""
|
| 12 |
+
# 1. Führe den Orchestrator mit dem `mock_llm` aus.
|
| 13 |
results = run_seismic_analysis(
|
| 14 |
model_id="mock_model",
|
| 15 |
prompt_type="control_long_prose",
|
| 16 |
seed=42,
|
| 17 |
num_steps=5,
|
| 18 |
+
concept_to_inject="test_concept",
|
| 19 |
+
injection_strength=1.0,
|
| 20 |
progress_callback=mocker.MagicMock()
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
assert "stats" in results
|
| 24 |
assert len(results["state_deltas"]) == 5
|
|
|
|
| 25 |
|
| 26 |
+
# 2. Mocke den Orchestrator, um die App-Logik zu testen
|
| 27 |
mocker.patch('app.run_seismic_analysis', return_value=results)
|
| 28 |
|
| 29 |
+
# 3. Führe die App-Logik (umbenannte Funktion) aus
|
| 30 |
+
_, plot_df, _ = run_single_analysis_display(
|
| 31 |
+
"mock_model", "control_long_prose", 42, 5, "test_concept", 1.0, progress=mocker.MagicMock()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
)
|
| 33 |
|
|
|
|
| 34 |
assert isinstance(plot_df, pd.DataFrame)
|
| 35 |
assert len(plot_df) == 5
|
| 36 |
assert "State Change (Delta)" in plot_df.columns
|