Torah_Codes / lib /grepher.py
cryptocalypse's picture
memory draf lib, grapher draft lib
6fb487c
raw
history blame
4.05 kB
import requests
import json
import networkx as nx
import matplotlib.pyplot as plt
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
from lib.memory import *
class APIRequester:
def __init__(self):
pass
def make_request(self, url):
response = requests.get(url)
if response.status_code == 200:
return response.json()
else:
return None
class JSONParser:
def __init__(self, memoria_nlp, threshold=70):
self.threshold = threshold
self.graph = nx.Graph()
self.memoria_nlp = memoria_nlp
def parse_json(self, data, parent=None):
if isinstance(data, dict):
for key, value in data.items():
if parent:
self.graph.add_node(parent)
self.graph.add_node(key)
self.graph.add_edge(parent, key)
for node in self.graph.nodes():
if node != parent and fuzz.ratio(node, key) >= self.threshold:
self.graph = nx.contracted_nodes(self.graph, node, key, self_loops=False)
self.memoria_nlp.agregar_concepto("keys", [(key, 1.0)])
if isinstance(value, (dict, list)):
self.parse_json(value, key)
else:
self.memoria_nlp.agregar_concepto("values", [(str(value), 1.0)])
if parent:
self.graph.add_node(value)
self.graph.add_edge(key, value)
for node in self.graph.nodes():
if node != value and fuzz.ratio(node, value) >= self.threshold:
self.graph = nx.contracted_nodes(self.graph, node, value, self_loops=False)
elif isinstance(data, list):
for item in data:
self.parse_json(item, parent)
def draw_graph(self):
pos = nx.spring_layout(self.graph, seed=42)
nx.draw(self.graph, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_weight='bold')
plt.title("JSON Graph")
plt.show()
def guardar_en_memoria(self):
keys = self.memoria_nlp.obtener_conceptos_acotados(100)
with open("memoria.json", "w") as file:
json.dump(keys, file)
def buscar_nodo(self, nodo):
return process.extractOne(nodo, self.graph.nodes())[0]
def eliminar_nodo(self, nodo):
self.graph.remove_node(nodo)
def agregar_nodo(self, nodo):
self.graph.add_node(nodo)
def distancia_entre_nodos(self, nodo1, nodo2):
return nx.shortest_path_length(self.graph, source=nodo1, target=nodo2)
def ruta_entre_nodos(self, nodo1, nodo2):
return nx.shortest_path(self.graph, source=nodo1, target=nodo2)
def unir_grafos(self, otro_grafo, umbral):
for nodo in otro_grafo.nodes():
nodo_similar = process.extractOne(nodo, self.graph.nodes())[0]
if fuzz.ratio(nodo, nodo_similar) >= umbral:
self.graph = nx.contracted_nodes(self.graph, nodo_similar, nodo, self_loops=False)
else:
self.graph.add_node(nodo)
for vecino in otro_grafo.neighbors(nodo):
self.graph.add_edge(nodo, vecino)
# Ejemplo de uso
memoria_nlp = MemoriaRobotNLP(max_size=100)
json_parser = JSONParser(memoria_nlp)
api_requester = APIRequester()
url = "https://jsonplaceholder.typicode.com/posts"
data = api_requester.make_request(url)
if data:
json_parser.parse_json(data)
json_parser.draw_graph()
otro_parser = JSONParser(MemoriaRobotNLP(max_size=100))
otro_parser.parse_json({"id": 101, "title": "New Title", "userId": 11})
print("Uniendo los grafos...")
json_parser.unir_grafos(otro_parser.graph, umbral=80)
print("Grafo unido:")
json_parser.draw_graph()
json_parser.guardar_en_memoria()
else:
print("Error al realizar la solicitud a la API.")