SWCK / 1 /model.py
neuralworm's picture
overhaul by Gemini
71934cf
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import hashlib # For generating deterministic values from seed
# --- Helper: Entropy Estimator ---
class EntropyEstimator(nn.Module):
def __init__(self, d_model, hidden_dim=32, name=""): # Smaller hidden_dim for simplicity
super().__init__()
self.fc1 = nn.Linear(d_model, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)
self.name = name
def forward(self, x, active_mask=None): # x: (batch, seq_len, d_model)
if active_mask is not None and x.shape[:-1] != active_mask.shape:
print(f"Warning [{self.name}]: x shape {x.shape[:-1]} and active_mask shape {active_mask.shape} mismatch. Entropy might be inaccurate.")
# Fallback if mask is problematic, or process only unmasked if shapes allow
if x.numel() == 0: return torch.tensor(0.0, device=x.device) # Handle empty tensor case
if active_mask.sum() == 0: return torch.tensor(0.0, device=x.device) # Handle all masked case
# Try to apply mask if possible, otherwise average all. This part can be tricky.
# For now, if shapes mismatch significantly, we might average all as a robust fallback.
# A more robust solution would ensure masks are always correct upstream.
if x.dim() == active_mask.dim() + 1 and x.shape[:-1] == active_mask.shape : # (B,S,D) and (B,S)
x_masked = x[active_mask]
if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
h = F.relu(self.fc1(x_masked))
return torch.sigmoid(self.fc2(h)).mean() # Mean entropy over active elements
else: # Fallback if mask application is uncertain
h = F.relu(self.fc1(x.reshape(-1, x.size(-1))))
return torch.sigmoid(self.fc2(h)).mean()
elif active_mask is None and x.numel() > 0:
h = F.relu(self.fc1(x.reshape(-1, x.size(-1))))
return torch.sigmoid(self.fc2(h)).mean()
elif x.numel() == 0:
return torch.tensor(0.0, device=x.device) # Handle empty tensor
# Default if active_mask is present and correct
x_masked = x[active_mask]
if x_masked.numel() == 0: return torch.tensor(0.0, device=x.device)
h = F.relu(self.fc1(x_masked))
return torch.sigmoid(self.fc2(h)).mean() # Mean entropy over active elements
# --- Helper: Seed Parser ---
class SeedParser:
def __init__(self, seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block):
self.seed_phrase = seed_phrase
self.seed_number_str = seed_number_str
self.d_model = d_model
self.num_adaptive_blocks = num_adaptive_blocks
self.num_sub_modules_per_block = num_sub_modules_per_block
self.debug_prints_enabled = True
print(f"--- SeedParser Initialization ---")
print(f" Seed Phrase: '{self.seed_phrase}'")
print(f" Seed Number: {self.seed_number_str}")
# 1. Process Seed Phrase (e.g., to get a base vector)
# For simplicity, hash it to get a deterministic starting point for numerical derivation
phrase_hash = hashlib.sha256(seed_phrase.encode()).hexdigest()
self.phrase_base_val = int(phrase_hash[:8], 16) # Use first 8 hex chars
if self.debug_prints_enabled: print(f" Phrase Base Value (from hash): {self.phrase_base_val}")
# 2. Process Seed Number (more direct influence on structure)
self.num_sequence = [int(d) for d in seed_number_str if d.isdigit()]
if not self.num_sequence: self.num_sequence = [0] # Fallback
if self.debug_prints_enabled: print(f" Numerical Sequence (from seed number): {self.num_sequence}")
self.init_map = self._generate_init_map()
if self.debug_prints_enabled:
print(f" Generated InitMap:")
for i, block_config in enumerate(self.init_map["block_configs"]):
print(f" Block {i}: Active Module Index: {block_config['active_module_idx']}, Target Entropy: {block_config['target_entropy']:.4f}, Gate Inits: {[f'{g:.2f}' for g in block_config['gate_inits']]}")
print(f"--- SeedParser Initialized ---")
def _get_deterministic_value(self, key_name, min_val, max_val, sequence_idx_offset=0):
# Combine phrase base and numerical sequence for more variation
combined_seed_val = self.phrase_base_val
for i, num in enumerate(self.num_sequence):
combined_seed_val += num * (10**(i + sequence_idx_offset))
# Hash the key_name to make it specific to the parameter
key_hash = int(hashlib.sha256(key_name.encode()).hexdigest()[:8], 16)
final_seed = combined_seed_val + key_hash
# Simple mapping to range (not cryptographically strong, but deterministic)
if max_val == min_val: return min_val # Avoid division by zero if range is 1
val = min_val + (final_seed % (max_val - min_val + 1))
return val
def _get_deterministic_float(self, key_name, min_val=0.0, max_val=1.0, sequence_idx_offset=0):
combined_seed_val = self.phrase_base_val
for i, num in enumerate(self.num_sequence):
combined_seed_val += num * (10**(i + sequence_idx_offset))
key_hash = int(hashlib.sha256(key_name.encode()).hexdigest()[:8], 16)
final_seed = combined_seed_val + key_hash
# Map to [0,1] float then scale
float_val = (final_seed % 1000001) / 1000000.0 # Ensure it's never exactly 0 for some ops
scaled_val = min_val + float_val * (max_val - min_val)
return scaled_val
def _generate_init_map(self):
init_map = {"block_configs": []}
for i in range(self.num_adaptive_blocks):
# Determine which sub-module is initially "more" active
active_module_idx = self._get_deterministic_value(
f"block_{i}_active_module", 0, self.num_sub_modules_per_block - 1, sequence_idx_offset=i
)
# Determine initial gating values (summing to 1 for softmax-like behavior later)
gate_inits_raw = [
self._get_deterministic_float(f"block_{i}_gate_{j}_init_raw", 0.1, 1.0, sequence_idx_offset=i*10 + j)
for j in range(self.num_sub_modules_per_block)
]
# Make one gate stronger based on active_module_idx, then normalize slightly
if self.num_sub_modules_per_block > 0 :
gate_inits_raw[active_module_idx] *= 2.0 # Boost the 'active' one
sum_raw = sum(gate_inits_raw)
gate_inits_normalized = [g / sum_raw for g in gate_inits_raw] if sum_raw > 0 else [1.0/self.num_sub_modules_per_block]*self.num_sub_modules_per_block
else:
gate_inits_normalized = []
# Determine a target entropy for this block's output
target_entropy = self._get_deterministic_float(
f"block_{i}_target_entropy", 0.05, 0.3, sequence_idx_offset=i # Target a moderate, non-zero entropy
)
init_map["block_configs"].append({
"active_module_idx": active_module_idx, # For initial bias
"gate_inits": gate_inits_normalized, # Initial values for learnable gates
"target_entropy": target_entropy
})
return init_map
def get_block_config(self, block_idx):
if 0 <= block_idx < len(self.init_map["block_configs"]):
return self.init_map["block_configs"][block_idx]
return None
# --- Adaptive Block ---
class AdaptiveBlock(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout, seed_parser_config, block_idx, num_sub_modules=3):
super().__init__()
self.d_model = d_model
self.block_idx = block_idx
self.num_sub_modules = num_sub_modules
self.config_from_seed = seed_parser_config # dict for this block
self.debug_prints_enabled = True
if self.debug_prints_enabled:
print(f" Initializing AdaptiveBlock {self.block_idx} with seed config: {self.config_from_seed}")
# Define potential sub-modules
self.sub_module_0 = nn.MultiheadAttention(d_model, n_heads, dropout=dropout, batch_first=True)
self.sub_module_1 = nn.Sequential(
nn.Linear(d_model, d_ff), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_ff, d_model)
)
# Sub-module 2: A simpler FFN or even a near identity (residual + small transform)
self.sub_module_2 = nn.Sequential(
nn.Linear(d_model, d_model // 2), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model // 2, d_model)
)
# Add more diverse sub-modules if needed for `num_sub_modules_per_block`
self.sub_modules = nn.ModuleList([self.sub_module_0, self.sub_module_1, self.sub_module_2])
if self.num_sub_modules > len(self.sub_modules):
print(f"Warning: block {self.block_idx} requested {self.num_sub_modules} sub_modules, but only {len(self.sub_modules)} are defined. Using defined ones.")
self.num_sub_modules = len(self.sub_modules)
# Learnable gates for combining/selecting sub-modules
# Initialize gates based on seed_parser_config
gate_initial_values = self.config_from_seed.get("gate_inits", [1.0/self.num_sub_modules]*self.num_sub_modules if self.num_sub_modules > 0 else [])
if len(gate_initial_values) != self.num_sub_modules: # Fallback if seed parser gave wrong number
print(f"Warning: Block {self.block_idx} gate_inits length mismatch. Re-initializing uniformly.")
gate_initial_values = [1.0/self.num_sub_modules]*self.num_sub_modules if self.num_sub_modules > 0 else []
self.gates = nn.Parameter(torch.tensor(gate_initial_values, dtype=torch.float32))
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model) # For output of block
self.dropout = nn.Dropout(dropout)
self.output_entropy_estimator = EntropyEstimator(d_model, name=f"Block{block_idx}_OutEntropy")
self.wiring_phase_active = False # To be set by the main model
def set_wiring_phase(self, active):
self.wiring_phase_active = active
if self.debug_prints_enabled and active:
print(f" AdaptiveBlock {self.block_idx}: WIRING PHASE ACTIVATED")
elif self.debug_prints_enabled and not active:
print(f" AdaptiveBlock {self.block_idx}: WIRING PHASE DEACTIVATED")
def forward(self, x, key_padding_mask=None, attn_mask=None): # attn_mask is for MHA, key_padding_mask for MHA keys
if self.debug_prints_enabled:
current_gates_softmax = F.softmax(self.gates, dim=0)
print(f" AdaptiveBlock {self.block_idx} Input x: {x.shape}, Gates (softmax): {[f'{g.item():.3f}' for g in current_gates_softmax]}")
x_norm = self.norm1(x)
outputs = []
active_module_found = False
for i, module in enumerate(self.sub_modules):
if i >= self.num_sub_modules: break # Only use configured number
if i == 0: # MHA
# MHA expects key_padding_mask (N, S) bool: True if padded.
# attn_mask (L,S) or (N*H,L,S) float/bool: True if masked / -inf.
# For self-attention, L=S. If attn_mask is causal (L,L), it's fine.
# If key_padding_mask is (N,S), it's fine.
module_out, _ = module(x_norm, x_norm, x_norm,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask,
need_weights=False) # Don't need weights for this sim
active_module_found = True
elif hasattr(module, 'fc1') or isinstance(module, nn.Sequential): # FFN-like
module_out = module(x_norm)
active_module_found = True
else: # Fallback for undefined module types in this simple sketch
module_out = x_norm # Pass through
outputs.append(module_out)
if not active_module_found or not outputs: # Should not happen if num_sub_modules > 0
print(f" AdaptiveBlock {self.block_idx}: No active sub_modules processed. Passing input through.")
final_out_unnorm = x # pass through
else:
# Gated combination
gate_weights = F.softmax(self.gates, dim=0) # Ensure they sum to 1
# Weighted sum of module outputs
# Ensure outputs are stackable (they should be if all modules output (B,S,D))
if outputs:
stacked_outputs = torch.stack(outputs, dim=0) # (num_sub_modules, B, S, D)
# gate_weights (num_sub_modules) -> (num_sub_modules, 1, 1, 1) for broadcasting
weighted_sum = torch.sum(stacked_outputs * gate_weights.view(-1, 1, 1, 1), dim=0)
final_out_unnorm = x + self.dropout(weighted_sum) # Residual connection
else: # Fallback if somehow no outputs
final_out_unnorm = x
final_out_norm = self.norm2(final_out_unnorm)
# During wiring phase, we might adjust gates based on local entropy vs target
# This is a very simplified "self-wiring" heuristic
current_output_entropy = self.output_entropy_estimator(final_out_norm, active_mask=~key_padding_mask if key_padding_mask is not None else None)
target_entropy_for_block = self.config_from_seed.get("target_entropy", 0.1) # Default target
if self.wiring_phase_active and self.training : # Only adjust gates during wiring AND training
with torch.no_grad(): # Don't track gradients for this heuristic adjustment
entropy_diff = current_output_entropy - target_entropy_for_block
# If current entropy is too high, slightly boost gates of modules that might reduce it (heuristic)
# If too low, slightly boost gates of modules that might increase it (heuristic)
# This is extremely heuristic. A true self-wiring mechanism would be more complex.
# For this sketch, let's say MHA (module 0) might increase complexity/entropy if it was low,
# and FFNs (module 1, 2) might refine/stabilize if entropy was high.
adjustment_strength = 0.01 # Small adjustment
if entropy_diff > 0.05: # Current entropy significantly higher than target
self.gates.data[1] += adjustment_strength
self.gates.data[2] += adjustment_strength
self.gates.data[0] -= adjustment_strength * 0.5 # Slightly decrease MHA
elif entropy_diff < -0.05: # Current entropy significantly lower
self.gates.data[0] += adjustment_strength
self.gates.data[1] -= adjustment_strength * 0.5
self.gates.data[2] -= adjustment_strength * 0.5
# Clamp gates to avoid extreme values before softmax (optional)
self.gates.data.clamp_(-2.0, 2.0)
if self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} WIRING: OutEnt={current_output_entropy.item():.4f}, TgtEnt={target_entropy_for_block:.4f}, Δ={entropy_diff.item():.4f} -> New Gates (raw): {[f'{g.item():.3f}' for g in self.gates.data]}")
elif self.debug_prints_enabled:
print(f" AdaptiveBlock {self.block_idx} EXEC: OutEnt={current_output_entropy.item():.4f}, TgtEnt={target_entropy_for_block:.4f}")
# Return the block's output and its current estimated output entropy
return final_out_norm, current_output_entropy, gate_weights
# --- Positional Encoding ---
class PositionalEncoding(nn.Module):
def __init__(self,d_model,dropout=0.1,max_len=512): # Reduced max_len for this sketch
super().__init__()
self.dropout=nn.Dropout(p=dropout)
pe=torch.zeros(max_len,d_model)
pos=torch.arange(0,max_len,dtype=torch.float).unsqueeze(1)
div=torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000.0)/d_model))
pe[:,0::2]=torch.sin(pos*div)
pe[:,1::2]=torch.cos(pos*div)
self.register_buffer('pe',pe.unsqueeze(0)) # (1, max_len, d_model)
def forward(self,x): # x: (batch, seq_len, d_model)
x=x+self.pe[:,:x.size(1),:]
return self.dropout(x)
# --- Main SWCK Model ---
class SWCKModel(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, d_ff, num_adaptive_blocks,
dropout, seed_phrase, seed_number_str, num_sub_modules_per_block=3):
super().__init__()
self.d_model = d_model
self.seed_phrase = seed_phrase
self.seed_number_str = seed_number_str
self.debug_prints_enabled = True
print(f"--- Initializing SWCKModel ---")
self.seed_parser = SeedParser(seed_phrase, seed_number_str, d_model, num_adaptive_blocks, num_sub_modules_per_block)
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.adaptive_blocks = nn.ModuleList()
for i in range(num_adaptive_blocks):
block_config = self.seed_parser.get_block_config(i)
if block_config is None:
raise ValueError(f"Could not get seed config for block {i}")
self.adaptive_blocks.append(
AdaptiveBlock(d_model, n_heads, d_ff, dropout, block_config, block_idx=i, num_sub_modules=num_sub_modules_per_block)
)
if self.debug_prints_enabled:
print(f" SWCKModel: Added AdaptiveBlock {i}")
self.fc_out = nn.Linear(d_model, vocab_size)
self.overall_output_entropy_estimator = EntropyEstimator(d_model, name="OverallOutEntropy")
self._init_weights()
print(f"--- SWCKModel Initialized ---")
def _init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc_out.bias.data.zero_()
self.fc_out.weight.data.uniform_(-initrange, initrange)
def set_wiring_phase(self, active):
if self.debug_prints_enabled:
print(f"SWCKModel: Setting wiring phase to {active} for all blocks.")
for block in self.adaptive_blocks:
block.set_wiring_phase(active)
def forward(self, src_tokens, src_key_padding_mask=None):
# src_tokens: (batch, seq_len)
# src_key_padding_mask: (batch, seq_len), True for padded positions
if self.debug_prints_enabled:
print(f"\n--- SWCKModel Forward Pass ---")
print(f" Input src_tokens: {src_tokens.shape}")
if src_key_padding_mask is not None: print(f" Input src_key_padding_mask: {src_key_padding_mask.shape}")
x = self.embedding(src_tokens) * math.sqrt(self.d_model)
x = self.pos_encoder(x)
if self.debug_prints_enabled: print(f" After Embedding & PosEnc, x: {x.shape}")
block_output_entropies = []
block_gate_weights = []
# For self-attention within blocks, a causal mask might be needed if it's a decoder-style model
# For this general "processing core" sketch, let's assume full self-attention unless specified.
# If this were a decoder, a causal mask would be passed or generated here.
# For now, no explicit top-level causal mask is made, relying on block's internal MHA params.
# A more standard transformer would create a causal mask for decoder self-attention.
# We'll pass src_key_padding_mask to MHA if it's self-attention on source.
for i, block in enumerate(self.adaptive_blocks):
if self.debug_prints_enabled: print(f" Processing AdaptiveBlock {i}...")
# For self-attention in blocks, key_padding_mask applies to keys/values.
# No separate attention mask for now unless it's a decoder block.
x, block_entropy, gates = block(x, key_padding_mask=src_key_padding_mask, attn_mask=None)
block_output_entropies.append(block_entropy)
block_gate_weights.append(gates)
if self.debug_prints_enabled: print(f" Output x from AdaptiveBlock {i}: {x.shape}, Entropy: {block_entropy.item():.4f}")
logits = self.fc_out(x)
if self.debug_prints_enabled: print(f" Output logits: {logits.shape}")
# Overall output entropy (of the final representation before fc_out)
# Masking for entropy calculation
final_active_mask = ~src_key_padding_mask if src_key_padding_mask is not None else None
overall_entropy = self.overall_output_entropy_estimator(x, active_mask=final_active_mask)
if self.debug_prints_enabled: print(f" Overall Final Representation Entropy: {overall_entropy.item():.4f}")
# Entropies from each block, overall output entropy, and gate weights for regularization/logging
entropy_report = {
"block_output_entropies": block_output_entropies, # List of tensors
"overall_output_entropy": overall_entropy, # Tensor
"block_gate_weights": block_gate_weights # List of tensors
}
return logits, entropy_report