Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from jiwer import wer | |
import re | |
import os | |
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]") | |
def parse_readme(filepath): | |
if not os.path.exists(filepath): | |
return "No README.md found." | |
with open(filepath, "r") as f: | |
text = f.read() | |
match = REGEX_YAML_BLOCK.search(text) | |
if match: | |
text = text[match.end():] | |
return text | |
def get_wer(df: pd.DataFrame): | |
print(df.keys()) | |
preds = df.iloc[:, 0].tolist() | |
truths = df.iloc[:, 1].tolist() | |
print(truths, preds, type(truths)) | |
err = wer(truths, preds) | |
return err | |
def compute(input_df: pd.DataFrame = None, input_file: str = None): | |
if input_df is not None and not input_df.empty and input_file is None: | |
print("in df") | |
if not (input_df.values == "").any(): | |
print("in df but empty string") | |
return get_wer(input_df) | |
elif input_file and (input_df.values == "").any(): | |
print("in file") | |
file_df = pd.read_csv(input_file.name) | |
print(file_df) | |
return get_wer(file_df) | |
else: | |
print("in error") | |
raise ValueError("Please don't provide both DataFrame and file.") | |
description = """ | |
To calculate WER: | |
* Type the `prediction` and the `truth` in the respective columns in the below calculator. | |
* You can insert multiple predictions and truths by clicking on the `New row` button. | |
* To calculate the WER after inserting all the texts, click on `Submit`. | |
OR | |
* Upload a CSV file with the columns being `prediction` and `truth`. | |
* The first row of the file is supposed to have the column names. | |
* The sentences should be enclosed within `""` and the prediction and truth need to be separated by `,`. | |
* Find an example file [here](https://huggingface.co/spaces/neuralspace/wer_calculator/resolve/main/example.csv). | |
* To calculate the WER after uploading the CSV file, click on `Submit`. | |
NOTE: Pleasd don't use both the methods at once. | |
""" | |
demo = gr.Interface( | |
fn=compute, | |
inputs=[ | |
gr.components.Dataframe( | |
headers=["prediction", "truth"], | |
col_count=2, | |
row_count=1, | |
label="Input" | |
), | |
gr.File( | |
file_count='single', | |
file_types=['.csv'], | |
label="CSV File" | |
) | |
], | |
outputs=gr.components.Textbox(label="WER"), | |
description=description, | |
title="WER Calculator", | |
article=parse_readme("README.md") | |
) | |
demo.launch() | |