anilbhatt1
commited on
Commit
•
52702ae
1
Parent(s):
dc38bce
Initial commit
Browse files- app.py +199 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision
|
6 |
+
from torchvision import transforms as tfms
|
7 |
+
import torchvision.models as models
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
|
12 |
+
|
13 |
+
import random
|
14 |
+
import os
|
15 |
+
import subprocess
|
16 |
+
|
17 |
+
from matplotlib import pyplot as plt
|
18 |
+
from pathlib import Path
|
19 |
+
from torch import autocast
|
20 |
+
from tqdm.auto import tqdm
|
21 |
+
|
22 |
+
# Set device
|
23 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
# Load a pre-trained VGG model (you can use other models as well)
|
26 |
+
vgg_model = models.vgg16(pretrained=True).features
|
27 |
+
vgg_model = vgg_model.to(torch_device)
|
28 |
+
|
29 |
+
# Create a new model that extracts features from the chosen layers
|
30 |
+
feature_extractor = nn.Sequential()
|
31 |
+
for name, layer in vgg_model._modules.items():
|
32 |
+
if name == '0': # Stop at the 0th layer
|
33 |
+
break
|
34 |
+
feature_extractor.add_module(name, layer)
|
35 |
+
feature_extractor = feature_extractor.to(torch_device)
|
36 |
+
|
37 |
+
pretrained_model_name_or_path = "segmind/tiny-sd"
|
38 |
+
pipe = DiffusionPipeline.from_pretrained(
|
39 |
+
pretrained_model_name_or_path,
|
40 |
+
torch_dtype=torch.float32
|
41 |
+
).to(torch_device)
|
42 |
+
|
43 |
+
# The noise scheduler
|
44 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
45 |
+
|
46 |
+
concept_dict={'anime_bg_v2':('sd-concepts-library/anime-background-style-v2','<anime-background-style-v2>',31),
|
47 |
+
'birb':('sd-concepts-library/birb-style','<birb-style>',32),
|
48 |
+
'depthmap':('sd-concepts-library/depthmap','<depthmap>',33),
|
49 |
+
'gta5_artwork':('sd-concepts-library/gta5-artwork','<gta5_artwork>',34),
|
50 |
+
'midjourney':('sd-concepts-library/midjourney-style','<midjourney-style>',35),
|
51 |
+
'beetlejuice':('sd-concepts-library/beetlejuice-cartoon-style','<beetlejuice-cartoon>',36)}
|
52 |
+
|
53 |
+
cache_style_list = []
|
54 |
+
|
55 |
+
def transform_pattern_image(pattern_image):
|
56 |
+
preprocess = tfms.Compose([
|
57 |
+
tfms.Resize((320, 320)),
|
58 |
+
tfms.ToTensor(),
|
59 |
+
])
|
60 |
+
tfms_pattern_image = preprocess(pattern_image).unsqueeze(0)
|
61 |
+
return tfms_pattern_image
|
62 |
+
|
63 |
+
def load_required_style(style):
|
64 |
+
for concept, value in concept_dict.items():
|
65 |
+
if style in concept:
|
66 |
+
concept_key = value[1]
|
67 |
+
concept_seed = value[2]
|
68 |
+
if style not in cache_style_list:
|
69 |
+
pipe.load_textual_inversion(value[0])
|
70 |
+
cache_style_list.append(style)
|
71 |
+
break
|
72 |
+
return concept_key, concept_seed
|
73 |
+
|
74 |
+
def pil_to_latent(input_im):
|
75 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
76 |
+
with torch.no_grad():
|
77 |
+
latent = pipe.vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
78 |
+
return 0.18215 * latent.latent_dist.sample() # [1, 4, 64, 64]
|
79 |
+
|
80 |
+
def latents_to_pil(latents):
|
81 |
+
# bath of latents -> list of images
|
82 |
+
latents = (1 / 0.18215) * latents
|
83 |
+
with torch.no_grad():
|
84 |
+
image = pipe.vae.decode(latents).sample
|
85 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
86 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
87 |
+
images = (image * 255).round().astype("uint8")
|
88 |
+
pil_images = [Image.fromarray(image) for image in images]
|
89 |
+
return pil_images
|
90 |
+
|
91 |
+
def perceptual_loss(images, pattern):
|
92 |
+
"""
|
93 |
+
This function calculates the perceptual loss between the output image and the target image.
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
"""
|
97 |
+
criterion = nn.MSELoss()
|
98 |
+
mse_loss = criterion(images, pattern)
|
99 |
+
return mse_loss
|
100 |
+
|
101 |
+
#Generating image with the modified embeddings with pattern loss guidance and saving the images to steps/{concept} folder
|
102 |
+
def generate_with_embs_pattern_loss(prompt, concept_seed, tfm_pattern_image, num_inf_steps):
|
103 |
+
height = 320 # default height of Stable Diffusion
|
104 |
+
width = 320 # default width of Stable Diffusion
|
105 |
+
num_inference_steps = num_inf_steps # Number of denoising steps
|
106 |
+
guidance_scale = 8 # Scale for classifier-free guidance
|
107 |
+
generator = torch.manual_seed(concept_seed) # Seed generator to create the inital latent noise
|
108 |
+
batch_size = 1
|
109 |
+
pattern_loss_scale = 20
|
110 |
+
|
111 |
+
text_input = pipe.tokenizer(prompt, padding="max_length", max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
112 |
+
input_ids = text_input.input_ids.to(torch_device)
|
113 |
+
with torch.no_grad():
|
114 |
+
text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0]
|
115 |
+
|
116 |
+
max_length = text_input.input_ids.shape[-1]
|
117 |
+
uncond_input = pipe.tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt")
|
118 |
+
with torch.no_grad():
|
119 |
+
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
120 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
121 |
+
|
122 |
+
# Prep Scheduler
|
123 |
+
scheduler.set_timesteps(num_inference_steps)
|
124 |
+
|
125 |
+
# Prep latents
|
126 |
+
latents = torch.randn((batch_size, pipe.unet.in_channels, height // 8, width // 8),
|
127 |
+
generator=generator,)
|
128 |
+
latents = latents.to(torch_device)
|
129 |
+
latents = latents * scheduler.init_noise_sigma
|
130 |
+
|
131 |
+
# Loop
|
132 |
+
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
133 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
134 |
+
latent_model_input = torch.cat([latents] * 2)
|
135 |
+
sigma = scheduler.sigmas[i]
|
136 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
137 |
+
|
138 |
+
# predict the noise residual
|
139 |
+
with torch.no_grad():
|
140 |
+
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
141 |
+
|
142 |
+
# perform CFG (Classifier Free Guidance)
|
143 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
144 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
145 |
+
#### ADDITIONAL GUIDANCE ###
|
146 |
+
if (i%3 == 0):
|
147 |
+
# Requires grad on the latents
|
148 |
+
latents = latents.detach().requires_grad_()
|
149 |
+
|
150 |
+
# Get the predicted x0:
|
151 |
+
latents_x0 = latents - sigma * noise_pred
|
152 |
+
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
153 |
+
|
154 |
+
# Decode to image space
|
155 |
+
denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
156 |
+
# Calculate loss
|
157 |
+
denoised_images_extr = feature_extractor(denoised_images)
|
158 |
+
reference_img_extr = feature_extractor(tfm_pattern_image)
|
159 |
+
loss = perceptual_loss(denoised_images_extr, reference_img_extr) * pattern_loss_scale
|
160 |
+
# Get gradient
|
161 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
162 |
+
|
163 |
+
# Modify the latents based on this gradient
|
164 |
+
latents = latents.detach() - cond_grad * sigma**2
|
165 |
+
|
166 |
+
# Now step with scheduler. compute the previous noisy sample x_t -> x_t-1
|
167 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
168 |
+
|
169 |
+
return latents
|
170 |
+
|
171 |
+
def generate_image(prompt, pattern_image, style, num_inf_steps):
|
172 |
+
tfm_pattern_image = transform_pattern_image(pattern_image) # Transform the pattern image to be fed to feature extractor
|
173 |
+
tfm_pattern_image = tfm_pattern_image.to(torch_device)
|
174 |
+
if style == "no-style":
|
175 |
+
concept_seed = 40
|
176 |
+
main_prompt = str(prompt)
|
177 |
+
else:
|
178 |
+
concept_key, concept_seed = load_required_style(style)
|
179 |
+
main_prompt = f"{str(prompt)} in the style of {concept_key}"
|
180 |
+
latents = generate_with_embs_pattern_loss(main_prompt, concept_seed, tfm_pattern_image, num_inf_steps)
|
181 |
+
generated_image = latents_to_pil(latents)[0]
|
182 |
+
return generated_image
|
183 |
+
|
184 |
+
def gradio_fn(prompt, pattern_image, style, num_inf_steps):
|
185 |
+
output_pil_image = generate_image(prompt, pattern_image, style, num_inf_steps)
|
186 |
+
return output_pil_image
|
187 |
+
|
188 |
+
demo = gr.Interface(fn=gradio_fn,
|
189 |
+
inputs=[gr.Textbox(info="Example prompt: 'A toddler gazing at sky'"),
|
190 |
+
gr.Image(type="pil", height=224, width=224, info='Sample image to emulate the pattern'),
|
191 |
+
gr.Radio(["anime","birb","depthmap","gta5","midjourney","beetlejuice","no-style"], label="Style",
|
192 |
+
info="Choose the style in which image to be made"),
|
193 |
+
gr.Slider(50, 100, value=50, label="Num_inference_steps", info="Choose between 50 & 100")],
|
194 |
+
outputs=gr.Image(height=320, width=320),
|
195 |
+
title="ImageAlchemy using Stable Diffusion",
|
196 |
+
description="- Stable Diffusion model that generates single image to fit \
|
197 |
+
(a) given text prompt (b) given reference image and (c) selected style.")
|
198 |
+
|
199 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.34.1
|
2 |
+
diffusers==0.21.4
|
3 |
+
ftfy==6.1.1
|
4 |
+
accelerate==0.23.0
|
5 |
+
scipy
|
6 |
+
torch==2.1.0
|
7 |
+
torchvision==0.16.0
|