Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import deepsparse
|
2 |
+
import gradio as gr
|
3 |
+
from typing import Tuple, List
|
4 |
+
|
5 |
+
deepsparse.cpu.print_hardware_capability()
|
6 |
+
|
7 |
+
MODEL_ID = "hf:neuralmagic/Llama-2-7b-pruned70-retrained-ultrachat-quant-ds"
|
8 |
+
|
9 |
+
DESCRIPTION = f"""
|
10 |
+
# LLM Chat on CPU with DeepSparse
|
11 |
+
The model stub for this example is: {MODEL_ID}
|
12 |
+
|
13 |
+
#### Accelerated Inference on CPUs
|
14 |
+
The Llama 2 model runs purely on CPU courtesy of [sparse software execution by DeepSparse](https://github.com/neuralmagic/deepsparse).
|
15 |
+
DeepSparse provides accelerated inference by taking advantage of the model's weight sparsity to deliver tokens fast!
|
16 |
+
"""
|
17 |
+
|
18 |
+
MAX_MAX_NEW_TOKENS = 1024
|
19 |
+
DEFAULT_MAX_NEW_TOKENS = 200
|
20 |
+
|
21 |
+
# Setup the engine
|
22 |
+
pipe = deepsparse.Pipeline.create(
|
23 |
+
task="text-generation",
|
24 |
+
model_path=MODEL_ID,
|
25 |
+
sequence_length=MAX_MAX_NEW_TOKENS,
|
26 |
+
prompt_sequence_length=16,
|
27 |
+
num_cores=8,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def clear_and_save_textbox(message: str) -> Tuple[str, str]:
|
32 |
+
return "", message
|
33 |
+
|
34 |
+
|
35 |
+
def display_input(
|
36 |
+
message: str, history: List[Tuple[str, str]]
|
37 |
+
) -> List[Tuple[str, str]]:
|
38 |
+
history.append((message, ""))
|
39 |
+
return history
|
40 |
+
|
41 |
+
|
42 |
+
def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
|
43 |
+
try:
|
44 |
+
message, _ = history.pop()
|
45 |
+
except IndexError:
|
46 |
+
message = ""
|
47 |
+
return history, message or ""
|
48 |
+
|
49 |
+
|
50 |
+
with gr.Blocks(css="style.css") as demo:
|
51 |
+
gr.Markdown(DESCRIPTION)
|
52 |
+
|
53 |
+
with gr.Group():
|
54 |
+
chatbot = gr.Chatbot(label="Chatbot")
|
55 |
+
with gr.Row():
|
56 |
+
textbox = gr.Textbox(
|
57 |
+
container=False,
|
58 |
+
show_label=False,
|
59 |
+
placeholder="Type a message...",
|
60 |
+
scale=10,
|
61 |
+
)
|
62 |
+
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
retry_button = gr.Button("🔄 Retry", variant="secondary")
|
66 |
+
undo_button = gr.Button("↩️ Undo", variant="secondary")
|
67 |
+
clear_button = gr.Button("🗑️ Clear", variant="secondary")
|
68 |
+
|
69 |
+
saved_input = gr.State()
|
70 |
+
|
71 |
+
gr.Examples(
|
72 |
+
examples=["Write a story about sparse neurons."],
|
73 |
+
inputs=[textbox],
|
74 |
+
)
|
75 |
+
|
76 |
+
max_new_tokens = gr.Slider(
|
77 |
+
label="Max new tokens",
|
78 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
79 |
+
minimum=0,
|
80 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
81 |
+
step=1,
|
82 |
+
interactive=True,
|
83 |
+
info="The maximum numbers of new tokens",
|
84 |
+
)
|
85 |
+
temperature = gr.Slider(
|
86 |
+
label="Temperature",
|
87 |
+
value=0.9,
|
88 |
+
minimum=0.05,
|
89 |
+
maximum=1.0,
|
90 |
+
step=0.05,
|
91 |
+
interactive=True,
|
92 |
+
info="Higher values produce more diverse outputs",
|
93 |
+
)
|
94 |
+
top_p = gr.Slider(
|
95 |
+
label="Top-p (nucleus) sampling",
|
96 |
+
value=0.40,
|
97 |
+
minimum=0.0,
|
98 |
+
maximum=1,
|
99 |
+
step=0.05,
|
100 |
+
interactive=True,
|
101 |
+
info="Higher values sample more low-probability tokens",
|
102 |
+
)
|
103 |
+
top_k = gr.Slider(
|
104 |
+
label="Top-k sampling",
|
105 |
+
value=20,
|
106 |
+
minimum=1,
|
107 |
+
maximum=100,
|
108 |
+
step=1,
|
109 |
+
interactive=True,
|
110 |
+
info="Sample from the top_k most likely tokens",
|
111 |
+
)
|
112 |
+
reptition_penalty = gr.Slider(
|
113 |
+
label="Repetition penalty",
|
114 |
+
value=1.2,
|
115 |
+
minimum=1.0,
|
116 |
+
maximum=2.0,
|
117 |
+
step=0.05,
|
118 |
+
interactive=True,
|
119 |
+
info="Penalize repeated tokens",
|
120 |
+
)
|
121 |
+
|
122 |
+
# Generation inference
|
123 |
+
def generate(
|
124 |
+
message,
|
125 |
+
history,
|
126 |
+
max_new_tokens: int,
|
127 |
+
temperature: float,
|
128 |
+
top_p: float,
|
129 |
+
top_k: int,
|
130 |
+
reptition_penalty: float,
|
131 |
+
):
|
132 |
+
generation_config = {
|
133 |
+
"max_new_tokens": max_new_tokens,
|
134 |
+
"do_sample": True,
|
135 |
+
"temperature": temperature,
|
136 |
+
"top_p": top_p,
|
137 |
+
"top_k": top_k,
|
138 |
+
"reptition_penalty": reptition_penalty,
|
139 |
+
}
|
140 |
+
|
141 |
+
conversation = []
|
142 |
+
conversation.append({"role": "user", "content": message})
|
143 |
+
|
144 |
+
formatted_conversation = pipe.tokenizer.apply_chat_template(
|
145 |
+
conversation, tokenize=False, add_generation_prompt=True
|
146 |
+
)
|
147 |
+
|
148 |
+
inference = pipe(
|
149 |
+
sequences=formatted_conversation,
|
150 |
+
generation_config=generation_config,
|
151 |
+
streaming=True,
|
152 |
+
)
|
153 |
+
|
154 |
+
for token in inference:
|
155 |
+
history[-1][1] += token.generations[0].text
|
156 |
+
yield history
|
157 |
+
|
158 |
+
print(pipe.timer_manager)
|
159 |
+
|
160 |
+
# Hooking up all the buttons
|
161 |
+
textbox.submit(
|
162 |
+
fn=clear_and_save_textbox,
|
163 |
+
inputs=textbox,
|
164 |
+
outputs=[textbox, saved_input],
|
165 |
+
api_name=False,
|
166 |
+
queue=False,
|
167 |
+
).then(
|
168 |
+
fn=display_input,
|
169 |
+
inputs=[saved_input, chatbot],
|
170 |
+
outputs=chatbot,
|
171 |
+
api_name=False,
|
172 |
+
queue=False,
|
173 |
+
).success(
|
174 |
+
generate,
|
175 |
+
inputs=[
|
176 |
+
saved_input,
|
177 |
+
chatbot,
|
178 |
+
max_new_tokens,
|
179 |
+
temperature,
|
180 |
+
top_p,
|
181 |
+
top_k,
|
182 |
+
reptition_penalty,
|
183 |
+
],
|
184 |
+
outputs=[chatbot],
|
185 |
+
api_name=False,
|
186 |
+
)
|
187 |
+
|
188 |
+
submit_button.click(
|
189 |
+
fn=clear_and_save_textbox,
|
190 |
+
inputs=textbox,
|
191 |
+
outputs=[textbox, saved_input],
|
192 |
+
api_name=False,
|
193 |
+
queue=False,
|
194 |
+
).then(
|
195 |
+
fn=display_input,
|
196 |
+
inputs=[saved_input, chatbot],
|
197 |
+
outputs=chatbot,
|
198 |
+
api_name=False,
|
199 |
+
queue=False,
|
200 |
+
).success(
|
201 |
+
generate,
|
202 |
+
inputs=[
|
203 |
+
saved_input,
|
204 |
+
chatbot,
|
205 |
+
max_new_tokens,
|
206 |
+
temperature,
|
207 |
+
top_p,
|
208 |
+
top_k,
|
209 |
+
reptition_penalty,
|
210 |
+
],
|
211 |
+
outputs=[chatbot],
|
212 |
+
api_name=False,
|
213 |
+
)
|
214 |
+
|
215 |
+
retry_button.click(
|
216 |
+
fn=delete_prev_fn,
|
217 |
+
inputs=chatbot,
|
218 |
+
outputs=[chatbot, saved_input],
|
219 |
+
api_name=False,
|
220 |
+
queue=False,
|
221 |
+
).then(
|
222 |
+
fn=display_input,
|
223 |
+
inputs=[saved_input, chatbot],
|
224 |
+
outputs=chatbot,
|
225 |
+
api_name=False,
|
226 |
+
queue=False,
|
227 |
+
).then(
|
228 |
+
generate,
|
229 |
+
inputs=[
|
230 |
+
saved_input,
|
231 |
+
chatbot,
|
232 |
+
max_new_tokens,
|
233 |
+
temperature,
|
234 |
+
top_p,
|
235 |
+
top_k,
|
236 |
+
reptition_penalty,
|
237 |
+
],
|
238 |
+
outputs=[chatbot],
|
239 |
+
api_name=False,
|
240 |
+
)
|
241 |
+
|
242 |
+
undo_button.click(
|
243 |
+
fn=delete_prev_fn,
|
244 |
+
inputs=chatbot,
|
245 |
+
outputs=[chatbot, saved_input],
|
246 |
+
api_name=False,
|
247 |
+
queue=False,
|
248 |
+
).then(
|
249 |
+
fn=lambda x: x,
|
250 |
+
inputs=[saved_input],
|
251 |
+
outputs=textbox,
|
252 |
+
api_name=False,
|
253 |
+
queue=False,
|
254 |
+
)
|
255 |
+
|
256 |
+
clear_button.click(
|
257 |
+
fn=lambda: ([], ""),
|
258 |
+
outputs=[chatbot, saved_input],
|
259 |
+
queue=False,
|
260 |
+
api_name=False,
|
261 |
+
)
|
262 |
+
|
263 |
+
demo.queue().launch(share=True)
|