cidadao.ai-backend / src /api /routes /investigations.py
anderson-ufrj
feat(investigations): implement comprehensive forensic enrichment system
ce75b0c
"""
Module: api.routes.investigations
Description: Investigation endpoints for anomaly detection and irregularity analysis
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""
import asyncio
from datetime import datetime
from typing import Dict, List, Optional, Any
from uuid import uuid4
from fastapi import APIRouter, HTTPException, Depends, BackgroundTasks, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field as PydanticField, validator
from src.core import json_utils
from src.core import get_logger
from src.agents import InvestigatorAgent, AgentContext
from src.api.middleware.authentication import get_current_user
from src.tools import TransparencyAPIFilter
from src.infrastructure.observability.metrics import track_time, count_calls, BusinessMetrics
from src.services.investigation_service_selector import investigation_service
from src.services.forensic_enrichment_service import forensic_enrichment_service
logger = get_logger(__name__)
router = APIRouter()
class InvestigationRequest(BaseModel):
"""Request model for starting an investigation."""
query: str = PydanticField(description="Investigation query or focus area")
data_source: str = PydanticField(default="contracts", description="Data source to investigate")
filters: Dict[str, Any] = PydanticField(default_factory=dict, description="Additional filters")
anomaly_types: List[str] = PydanticField(
default=["price", "vendor", "temporal", "payment"],
description="Types of anomalies to detect"
)
include_explanations: bool = PydanticField(default=True, description="Include AI explanations")
stream_results: bool = PydanticField(default=False, description="Stream results as they're found")
@validator('data_source')
def validate_data_source(cls, v):
"""Validate data source."""
allowed_sources = ['contracts', 'expenses', 'agreements', 'biddings', 'servants']
if v not in allowed_sources:
raise ValueError(f'Data source must be one of: {allowed_sources}')
return v
@validator('anomaly_types')
def validate_anomaly_types(cls, v):
"""Validate anomaly types."""
allowed_types = ['price', 'vendor', 'temporal', 'payment', 'duplicate', 'pattern']
invalid_types = [t for t in v if t not in allowed_types]
if invalid_types:
raise ValueError(f'Invalid anomaly types: {invalid_types}. Allowed: {allowed_types}')
return v
class InvestigationResponse(BaseModel):
"""Response model for investigation results."""
investigation_id: str
status: str
query: str
data_source: str
started_at: datetime
completed_at: Optional[datetime] = None
anomalies_found: int
total_records_analyzed: int
results: List[Dict[str, Any]]
summary: str
confidence_score: float
processing_time: float
class AnomalyResult(BaseModel):
"""Individual anomaly result."""
anomaly_id: str
type: str
severity: str
confidence: float
description: str
explanation: str
affected_records: List[Dict[str, Any]]
suggested_actions: List[str]
metadata: Dict[str, Any]
class InvestigationStatus(BaseModel):
"""Investigation status response."""
investigation_id: str
status: str
progress: float
current_phase: str
records_processed: int
anomalies_detected: int
estimated_completion: Optional[datetime] = None
# In-memory storage for investigation tracking (replace with database later)
_active_investigations: Dict[str, Dict[str, Any]] = {}
@router.post("/start", response_model=Dict[str, str])
@count_calls("cidadao_ai_investigation_requests_total", labels={"operation": "start"})
@track_time("cidadao_ai_investigation_start_duration_seconds")
async def start_investigation(
request: InvestigationRequest,
background_tasks: BackgroundTasks,
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
Start a new investigation for anomaly detection.
Creates and queues an investigation task that will analyze government data
for irregularities and suspicious patterns.
"""
try:
# Create investigation in database (Supabase via REST API on HuggingFace)
db_investigation = await investigation_service.create(
user_id=current_user.get("user_id"),
query=request.query,
data_source=request.data_source,
filters=request.filters,
anomaly_types=request.anomaly_types
)
investigation_id = db_investigation.id if hasattr(db_investigation, 'id') else db_investigation['id']
logger.info(
"investigation_created_in_database",
investigation_id=investigation_id,
query=request.query,
data_source=request.data_source,
user_id=current_user.get("user_id"),
)
except Exception as e:
# Fallback to in-memory if database fails
logger.warning(
"Failed to save investigation to database, using in-memory fallback",
error=str(e)
)
investigation_id = str(uuid4())
# Keep in-memory copy for backward compatibility and fast access
_active_investigations[investigation_id] = {
"id": investigation_id,
"status": "started",
"query": request.query,
"data_source": request.data_source,
"filters": request.filters,
"anomaly_types": request.anomaly_types,
"user_id": current_user.get("user_id"),
"started_at": datetime.utcnow(),
"progress": 0.0,
"current_phase": "initializing",
"records_processed": 0,
"anomalies_detected": 0,
"results": [],
}
# Start investigation in background
background_tasks.add_task(
_run_investigation,
investigation_id,
request
)
logger.info(
"investigation_started",
investigation_id=investigation_id,
query=request.query,
data_source=request.data_source,
user_id=current_user.get("user_id"),
)
# Track business metrics
BusinessMetrics.record_investigation_created(
priority="medium",
user_type="authenticated"
)
BusinessMetrics.update_active_investigations(len(_active_investigations))
return {
"investigation_id": investigation_id,
"status": "started",
"message": "Investigation queued for processing"
}
@router.get("/stream/{investigation_id}")
async def stream_investigation_results(
investigation_id: str,
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
Stream investigation results in real-time.
Returns a streaming response with investigation progress and results
as they are discovered.
"""
if investigation_id not in _active_investigations:
raise HTTPException(status_code=404, detail="Investigation not found")
investigation = _active_investigations[investigation_id]
# Check user authorization
if investigation["user_id"] != current_user.get("user_id"):
raise HTTPException(status_code=403, detail="Access denied")
async def generate_updates():
"""Generate real-time updates for the investigation."""
last_update = 0
while True:
current_investigation = _active_investigations.get(investigation_id)
if not current_investigation:
break
# Send progress updates
if current_investigation["progress"] > last_update:
update_data = {
"type": "progress",
"investigation_id": investigation_id,
"progress": current_investigation["progress"],
"current_phase": current_investigation["current_phase"],
"records_processed": current_investigation["records_processed"],
"anomalies_detected": current_investigation["anomalies_detected"],
"timestamp": datetime.utcnow().isoformat()
}
yield f"data: {json_utils.dumps(update_data)}\n\n"
last_update = current_investigation["progress"]
# Send anomaly results as they're found
new_results = current_investigation["results"][len(current_investigation.get("sent_results", [])):]
for result in new_results:
result_data = {
"type": "anomaly",
"investigation_id": investigation_id,
"result": result,
"timestamp": datetime.utcnow().isoformat()
}
yield f"data: {json_utils.dumps(result_data)}\n\n"
# Mark results as sent
current_investigation["sent_results"] = current_investigation["results"].copy()
# Check if investigation is complete
if current_investigation["status"] in ["completed", "failed"]:
completion_data = {
"type": "completion",
"investigation_id": investigation_id,
"status": current_investigation["status"],
"total_anomalies": len(current_investigation["results"]),
"timestamp": datetime.utcnow().isoformat()
}
yield f"data: {json_utils.dumps(completion_data)}\n\n"
break
await asyncio.sleep(1) # Poll every second
return StreamingResponse(
generate_updates(),
media_type="text/plain",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "text/event-stream",
}
)
@router.get("/{investigation_id}/status", response_model=InvestigationStatus)
async def get_investigation_status(
investigation_id: str,
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
Get the current status of an investigation.
Returns progress information and current phase of the investigation.
"""
if investigation_id not in _active_investigations:
raise HTTPException(status_code=404, detail="Investigation not found")
investigation = _active_investigations[investigation_id]
# Check user authorization
if investigation["user_id"] != current_user.get("user_id"):
raise HTTPException(status_code=403, detail="Access denied")
return InvestigationStatus(
investigation_id=investigation_id,
status=investigation["status"],
progress=investigation["progress"],
current_phase=investigation["current_phase"],
records_processed=investigation["records_processed"],
anomalies_detected=investigation["anomalies_detected"],
)
@router.get("/{investigation_id}/results", response_model=InvestigationResponse)
async def get_investigation_results(
investigation_id: str,
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
Get complete investigation results.
Returns all anomalies found and analysis summary.
"""
if investigation_id not in _active_investigations:
raise HTTPException(status_code=404, detail="Investigation not found")
investigation = _active_investigations[investigation_id]
# Check user authorization
if investigation["user_id"] != current_user.get("user_id"):
raise HTTPException(status_code=403, detail="Access denied")
if investigation["status"] not in ["completed", "failed"]:
raise HTTPException(status_code=409, detail="Investigation not yet completed")
processing_time = 0.0
if investigation.get("completed_at") and investigation.get("started_at"):
processing_time = (investigation["completed_at"] - investigation["started_at"]).total_seconds()
return InvestigationResponse(
investigation_id=investigation_id,
status=investigation["status"],
query=investigation["query"],
data_source=investigation["data_source"],
started_at=investigation["started_at"],
completed_at=investigation.get("completed_at"),
anomalies_found=len(investigation["results"]),
total_records_analyzed=investigation["records_processed"],
results=investigation["results"],
summary=investigation.get("summary", "Investigation completed"),
confidence_score=investigation.get("confidence_score", 0.0),
processing_time=processing_time
)
@router.get("/", response_model=List[InvestigationStatus])
async def list_investigations(
status: Optional[str] = Query(None, description="Filter by status"),
limit: int = Query(10, ge=1, le=100, description="Number of investigations to return"),
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
List user's investigations.
Returns a list of investigations owned by the current user.
"""
user_id = current_user.get("user_id")
# Filter investigations by user
user_investigations = [
inv for inv in _active_investigations.values()
if inv["user_id"] == user_id
]
# Filter by status if provided
if status:
user_investigations = [inv for inv in user_investigations if inv["status"] == status]
# Sort by start time (newest first)
user_investigations.sort(key=lambda x: x["started_at"], reverse=True)
# Apply limit
user_investigations = user_investigations[:limit]
return [
InvestigationStatus(
investigation_id=inv["id"],
status=inv["status"],
progress=inv["progress"],
current_phase=inv["current_phase"],
records_processed=inv["records_processed"],
anomalies_detected=inv["anomalies_detected"],
)
for inv in user_investigations
]
@router.delete("/{investigation_id}")
async def cancel_investigation(
investigation_id: str,
current_user: Dict[str, Any] = Depends(get_current_user)
):
"""
Cancel a running investigation.
Stops the investigation and removes it from the queue.
"""
if investigation_id not in _active_investigations:
raise HTTPException(status_code=404, detail="Investigation not found")
investigation = _active_investigations[investigation_id]
# Check user authorization
if investigation["user_id"] != current_user.get("user_id"):
raise HTTPException(status_code=403, detail="Access denied")
if investigation["status"] in ["completed", "failed"]:
raise HTTPException(status_code=409, detail="Investigation already finished")
# Mark as cancelled
investigation["status"] = "cancelled"
investigation["completed_at"] = datetime.utcnow()
logger.info(
"investigation_cancelled",
investigation_id=investigation_id,
user_id=current_user.get("user_id"),
)
return {"message": "Investigation cancelled successfully"}
async def _run_investigation(investigation_id: str, request: InvestigationRequest):
"""
Execute the investigation in the background.
This function runs the actual anomaly detection using InvestigatorAgent.
"""
investigation = _active_investigations[investigation_id]
start_time = datetime.utcnow()
try:
# Update status
investigation["status"] = "running"
investigation["current_phase"] = "data_retrieval"
investigation["progress"] = 0.1
# Update in database
try:
await investigation_service.update_status(
investigation_id=investigation_id,
status="running",
progress=0.1,
current_phase="data_retrieval"
)
except Exception as e:
logger.warning(f"Failed to update investigation status in database: {e}")
# Create agent context
context = AgentContext(
conversation_id=investigation_id,
user_id=investigation["user_id"],
session_data={"investigation_query": request.query}
)
# Initialize InvestigatorAgent
investigator = InvestigatorAgent()
# Prepare filters for data retrieval
filters = TransparencyAPIFilter(**request.filters)
investigation["current_phase"] = "anomaly_detection"
investigation["progress"] = 0.3
# Update progress in database
try:
await investigation_service.update_status(
investigation_id=investigation_id,
status="running",
progress=0.3,
current_phase="anomaly_detection"
)
except Exception as e:
logger.warning(f"Failed to update investigation progress in database: {e}")
# Execute investigation
results = await investigator.investigate_anomalies(
query=request.query,
data_source=request.data_source,
filters=filters,
anomaly_types=request.anomaly_types,
context=context
)
investigation["current_phase"] = "forensic_enrichment"
investigation["progress"] = 0.7
# Process results with forensic enrichment
enriched_results = []
for result in results:
try:
# Extract contract data from affected entities
contract_data = result.affected_entities[0] if result.affected_entities else {}
# Get comparative data from remaining affected entities or metadata
comparative_data = result.affected_entities[1:] if len(result.affected_entities) > 1 else None
# Build basic anomaly structure
basic_anomaly = {
"type": result.anomaly_type,
"severity": result.severity,
"confidence": result.confidence,
"description": result.description,
"explanation": result.explanation if request.include_explanations else "",
"recommendations": result.recommendations,
"metadata": result.metadata,
}
# Enrich with forensic details
forensic_result = await forensic_enrichment_service.enrich_anomaly(
basic_anomaly=basic_anomaly,
contract_data=contract_data,
comparative_data=comparative_data
)
enriched_results.append(forensic_result.to_dict())
except Exception as e:
logger.warning(
"Failed to enrich anomaly with forensic details, using basic result",
error=str(e),
anomaly_type=result.anomaly_type
)
# Fallback to basic result if enrichment fails
enriched_results.append({
"anomaly_id": str(uuid4()),
"type": result.anomaly_type,
"severity": result.severity,
"confidence": result.confidence,
"description": result.description,
"explanation": result.explanation if request.include_explanations else "",
"affected_records": result.affected_entities,
"suggested_actions": result.recommendations,
"metadata": result.metadata,
})
investigation["results"] = enriched_results
investigation["anomalies_detected"] = len(results)
investigation["records_processed"] = sum(len(r.affected_entities) for r in results)
# Generate summary
investigation["current_phase"] = "summary_generation"
investigation["progress"] = 0.9
summary = await investigator.generate_summary(results, context)
investigation["summary"] = summary
investigation["confidence_score"] = sum(r.confidence for r in results) / len(results) if results else 0.0
# Mark as completed
investigation["status"] = "completed"
investigation["completed_at"] = datetime.utcnow()
investigation["progress"] = 1.0
investigation["current_phase"] = "completed"
# Save final results to database
try:
await investigation_service.update_status(
investigation_id=investigation_id,
status="completed",
progress=1.0,
current_phase="completed",
total_records_analyzed=investigation["records_processed"],
anomalies_found=investigation["anomalies_detected"],
summary=summary,
confidence_score=investigation["confidence_score"],
results=investigation["results"]
)
logger.info(
"investigation_saved_to_database",
investigation_id=investigation_id
)
except Exception as e:
logger.error(
"Failed to save investigation results to database",
investigation_id=investigation_id,
error=str(e)
)
# Calculate duration
duration = (datetime.utcnow() - start_time).total_seconds()
logger.info(
"investigation_completed",
investigation_id=investigation_id,
anomalies_found=len(results),
records_analyzed=investigation["records_processed"],
)
# Track business metrics
BusinessMetrics.record_investigation_completed(
investigation_type=request.data_source,
duration_seconds=duration,
priority="medium"
)
BusinessMetrics.update_active_investigations(len(_active_investigations) - 1)
# Track anomalies found
for result in results:
BusinessMetrics.record_anomaly_detected(
anomaly_type=result.anomaly_type,
severity=result.severity,
data_source=request.data_source,
confidence_score=result.confidence
)
except Exception as e:
logger.error(
"investigation_failed",
investigation_id=investigation_id,
error=str(e),
)
investigation["status"] = "failed"
investigation["completed_at"] = datetime.utcnow()
investigation["current_phase"] = "failed"
investigation["error"] = str(e)
# Save failure to database
try:
await investigation_service.update_status(
investigation_id=investigation_id,
status="failed",
progress=investigation.get("progress", 0.0),
current_phase="failed",
error=str(e)
)
except Exception as db_error:
logger.error(
"Failed to save investigation failure to database",
investigation_id=investigation_id,
error=str(db_error)
)