neural-net-rahul commited on
Commit
677d8a9
·
1 Parent(s): c80c5c7

initial commit

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from transformers import pipeline
4
+
5
+ title = "Token Classification"
6
+ description = """
7
+ Label the entities of a sentence as:
8
+ 1. person(PER),
9
+ 2. organization(ORG),
10
+ 3. location(LOC)
11
+ 4. miscellaneous(MISC).
12
+ <img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
13
+ """
14
+
15
+ article = "Check out [my github repository](https://github.com/Neural-Net-Rahul/P2-Token-Classification-using-Fine-tuned-Hugging-face-transformer) and my [fine tuned model](https://huggingface.co/neural-net-rahul/bert-finetuned-ner)"
16
+
17
+ textbox = gr.Textbox(label="Type your sentence here :", placeholder="My name is Bill Gates.", lines=3)
18
+
19
+ model = pipeline('token-classification',model='neural-net-rahul/bert-finetuned-ner')
20
+
21
+ def predict(text):
22
+ result = []
23
+ for dicti in model(text):
24
+ entity,word = dicti['entity'],dicti['word']
25
+ if entity == "B-PER" or entity=='I-PER':
26
+ entity = "Person"
27
+ elif entity == "B-LOC" or entity=='I-LOC':
28
+ entity = "Location"
29
+ elif entity == "B-ORG" or entity=='I-ORG':
30
+ entity = "Organization"
31
+ elif entity == "B-MISC" or entity=='I-MISC':
32
+ entity = "Miscellaneous"
33
+ result.append({entity,word})
34
+ return result
35
+
36
+ gr.Interface(
37
+ fn=predict,
38
+ inputs=textbox,
39
+ outputs=[gr.Text()],
40
+ title=title,
41
+ description=description,
42
+ article=article,
43
+ examples=[["Mark founded Facebook, shaping global social media connectivity."], ["Delhi is the most beautiful state after Kerala"]],
44
+ ).launch()