minhopark-neubla commited on
Commit
996dccf
·
1 Parent(s): 27c2020

[MLP-1479] Init Neubla LLM Evaluation Board

Browse files
.gitignore ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ venv/
2
+ __pycache__/
3
+ .env
4
+ .ipynb_checkpoints
5
+ *ipynb
6
+ .vscode/
7
+
8
+ eval-queue/
9
+ eval-results/
10
+ dynamic-info/
11
+
12
+ src/assets/model_counts.html
.pre-commit-config.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
+ autoupdate_schedule: quarterly
22
+
23
+ repos:
24
+ - repo: https://github.com/pre-commit/pre-commit-hooks
25
+ rev: v4.3.0
26
+ hooks:
27
+ - id: check-yaml
28
+ - id: check-case-conflict
29
+ - id: detect-private-key
30
+ - id: check-added-large-files
31
+ args: ['--maxkb=1000']
32
+ - id: requirements-txt-fixer
33
+ - id: end-of-file-fixer
34
+ - id: trailing-whitespace
35
+
36
+ - repo: https://github.com/PyCQA/isort
37
+ rev: 5.12.0
38
+ hooks:
39
+ - id: isort
40
+ name: Format imports
41
+
42
+ - repo: https://github.com/psf/black
43
+ rev: 22.12.0
44
+ hooks:
45
+ - id: black
46
+ name: Format code
47
+ additional_dependencies: ['click==8.0.2']
48
+
49
+ - repo: https://github.com/charliermarsh/ruff-pre-commit
50
+ # Ruff version.
51
+ rev: 'v0.0.267'
52
+ hooks:
53
+ - id: ruff
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
app.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from apscheduler.schedulers.background import BackgroundScheduler
4
+ from huggingface_hub import snapshot_download
5
+ from gradio_space_ci import enable_space_ci
6
+
7
+ from src.display.about import (
8
+ INTRODUCTION_TEXT,
9
+ LLM_BENCHMARKS_TEXT,
10
+ CITATION_BUTTON_LABEL,
11
+ CITATION_BUTTON_TEXT,
12
+ TITLE,
13
+ )
14
+ from src.display.css_html_js import custom_css
15
+ from src.display.utils import (
16
+ BENCHMARK_COLS,
17
+ COLS,
18
+ EVAL_COLS,
19
+ EVAL_TYPES,
20
+ NUMERIC_INTERVALS,
21
+ TYPES,
22
+ AutoEvalColumn,
23
+ ModelType,
24
+ fields,
25
+ WeightType,
26
+ Precision,
27
+ )
28
+ from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, REPO_ID, HF_TOKEN
29
+ from src.populate import get_leaderboard_df
30
+
31
+ # from src.tools.collections import update_collections
32
+ from src.tools.plots import (
33
+ create_metric_plot_obj,
34
+ create_plot_df,
35
+ create_scores_df,
36
+ )
37
+
38
+ # Start ephemeral Spaces on PRs (see config in README.md)
39
+ # enable_space_ci()
40
+
41
+
42
+ def restart_space():
43
+ API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
44
+
45
+
46
+ def init_space():
47
+
48
+ try:
49
+ print(EVAL_RESULTS_PATH)
50
+ snapshot_download(
51
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
52
+ )
53
+ except Exception:
54
+ pass
55
+
56
+ raw_data, original_df = get_leaderboard_df(
57
+ results_path=EVAL_RESULTS_PATH, cols=COLS, benchmark_cols=BENCHMARK_COLS
58
+ )
59
+ # update_collections(original_df.copy())
60
+ leaderboard_df = original_df.copy()
61
+
62
+ plot_df = create_plot_df(create_scores_df(raw_data))
63
+
64
+ return leaderboard_df, original_df, plot_df
65
+
66
+
67
+ leaderboard_df, original_df, plot_df = init_space()
68
+
69
+
70
+ # Searching and filtering
71
+ def update_table(
72
+ hidden_df: pd.DataFrame,
73
+ columns: list,
74
+ type_query: list,
75
+ weight_precision_query: str,
76
+ activation_precision_query: str,
77
+ size_query: list,
78
+ hide_models: list,
79
+ query: str,
80
+ ):
81
+ filtered_df = filter_models(
82
+ df=hidden_df,
83
+ type_query=type_query,
84
+ size_query=size_query,
85
+ weight_precision_query=weight_precision_query,
86
+ activation_precision_query=activation_precision_query,
87
+ hide_models=hide_models,
88
+ )
89
+ filtered_df = filter_queries(query, filtered_df)
90
+ df = select_columns(filtered_df, columns)
91
+ return df
92
+
93
+
94
+ def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
95
+ query = request.query_params.get("query") or ""
96
+ return (
97
+ query,
98
+ query,
99
+ ) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
100
+
101
+
102
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
103
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
104
+
105
+
106
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
107
+ always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
108
+ dummy_col = [AutoEvalColumn.dummy.name]
109
+ # AutoEvalColumn.model_type_symbol.name,
110
+ # AutoEvalColumn.model.name,
111
+ # We use COLS to maintain sorting
112
+ filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
113
+ return filtered_df
114
+
115
+
116
+ def filter_queries(query: str, filtered_df: pd.DataFrame):
117
+ """Added by Abishek"""
118
+ final_df = []
119
+ if query != "":
120
+ queries = [q.strip() for q in query.split(";")]
121
+ for _q in queries:
122
+ _q = _q.strip()
123
+ if _q != "":
124
+ temp_filtered_df = search_table(filtered_df, _q)
125
+ if len(temp_filtered_df) > 0:
126
+ final_df.append(temp_filtered_df)
127
+ if len(final_df) > 0:
128
+ filtered_df = pd.concat(final_df)
129
+ filtered_df = filtered_df.drop_duplicates(
130
+ subset=[
131
+ AutoEvalColumn.model.name,
132
+ AutoEvalColumn.weight_precision.name,
133
+ AutoEvalColumn.activation_precision.name,
134
+ AutoEvalColumn.revision.name,
135
+ ]
136
+ )
137
+
138
+ return filtered_df
139
+
140
+
141
+ def filter_models(
142
+ df: pd.DataFrame,
143
+ type_query: list,
144
+ size_query: list,
145
+ weight_precision_query: list,
146
+ activation_precision_query: list,
147
+ hide_models: list,
148
+ ) -> pd.DataFrame:
149
+ # Show all models
150
+ if "Private or deleted" in hide_models:
151
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
152
+ else:
153
+ filtered_df = df
154
+
155
+ if "Contains a merge/moerge" in hide_models:
156
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
157
+
158
+ if "MoE" in hide_models:
159
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
160
+
161
+ if "Flagged" in hide_models:
162
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
163
+
164
+ type_emoji = [t[0] for t in type_query]
165
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
166
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_precision.name].isin(weight_precision_query + ["None"])]
167
+ filtered_df = filtered_df.loc[
168
+ df[AutoEvalColumn.activation_precision.name].isin(activation_precision_query + ["None"])
169
+ ]
170
+
171
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
172
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
173
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
174
+ filtered_df = filtered_df.loc[mask]
175
+
176
+ return filtered_df
177
+
178
+
179
+ leaderboard_df = filter_models(
180
+ df=leaderboard_df,
181
+ type_query=[t.to_str(" : ") for t in ModelType],
182
+ size_query=list(NUMERIC_INTERVALS.keys()),
183
+ weight_precision_query=[i.value.name for i in Precision],
184
+ activation_precision_query=[i.value.name for i in Precision],
185
+ hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
186
+ )
187
+
188
+ demo = gr.Blocks(css=custom_css)
189
+ with demo:
190
+ gr.HTML(TITLE)
191
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
192
+
193
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
194
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
195
+ with gr.Row():
196
+ with gr.Column():
197
+ with gr.Row():
198
+ search_bar = gr.Textbox(
199
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
200
+ show_label=False,
201
+ elem_id="search-bar",
202
+ )
203
+ with gr.Row():
204
+ shown_columns = gr.CheckboxGroup(
205
+ choices=[
206
+ c.name
207
+ for c in fields(AutoEvalColumn)
208
+ if not c.hidden and not c.never_hidden and not c.dummy
209
+ ],
210
+ value=[
211
+ c.name
212
+ for c in fields(AutoEvalColumn)
213
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
214
+ ],
215
+ label="Select columns to show",
216
+ elem_id="column-select",
217
+ interactive=True,
218
+ )
219
+ with gr.Row():
220
+ hide_models = gr.CheckboxGroup(
221
+ label="Hide models",
222
+ choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
223
+ value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
224
+ interactive=True,
225
+ )
226
+ with gr.Column(min_width=320):
227
+ # with gr.Box(elem_id="box-filter"):
228
+ filter_columns_type = gr.CheckboxGroup(
229
+ label="Model types",
230
+ choices=[t.to_str() for t in ModelType],
231
+ value=[t.to_str() for t in ModelType],
232
+ interactive=True,
233
+ elem_id="filter-columns-type",
234
+ )
235
+ filter_columns_weight_precision = gr.CheckboxGroup(
236
+ label="Weight Precision",
237
+ choices=[i.value.name for i in Precision],
238
+ value=[i.value.name for i in Precision],
239
+ interactive=True,
240
+ elem_id="filter-columns-weight-precision",
241
+ )
242
+ filter_columns_activation_precision = gr.CheckboxGroup(
243
+ label="Activation Precision",
244
+ choices=[i.value.name for i in Precision],
245
+ value=[i.value.name for i in Precision],
246
+ interactive=True,
247
+ elem_id="filter-columns-activation-precision",
248
+ )
249
+ filter_columns_size = gr.CheckboxGroup(
250
+ label="Model sizes (in billions of parameters)",
251
+ choices=list(NUMERIC_INTERVALS.keys()),
252
+ value=list(NUMERIC_INTERVALS.keys()),
253
+ interactive=True,
254
+ elem_id="filter-columns-size",
255
+ )
256
+
257
+ leaderboard_table = gr.components.Dataframe(
258
+ value=leaderboard_df[
259
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
260
+ + shown_columns.value
261
+ + [AutoEvalColumn.dummy.name]
262
+ ],
263
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
264
+ datatype=TYPES,
265
+ elem_id="leaderboard-table",
266
+ interactive=False,
267
+ visible=True,
268
+ # column_widths=["2%", "33%"]
269
+ )
270
+
271
+ # Dummy leaderboard for handling the case when the user uses backspace key
272
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
273
+ value=original_df[COLS],
274
+ headers=COLS,
275
+ datatype=TYPES,
276
+ visible=False,
277
+ )
278
+ search_bar.submit(
279
+ update_table,
280
+ [
281
+ hidden_leaderboard_table_for_search,
282
+ shown_columns,
283
+ filter_columns_type,
284
+ filter_columns_weight_precision,
285
+ filter_columns_activation_precision,
286
+ filter_columns_size,
287
+ hide_models,
288
+ search_bar,
289
+ ],
290
+ leaderboard_table,
291
+ )
292
+
293
+ # Define a hidden component that will trigger a reload only if a query parameter has been set
294
+ hidden_search_bar = gr.Textbox(value="", visible=False)
295
+ hidden_search_bar.change(
296
+ update_table,
297
+ [
298
+ hidden_leaderboard_table_for_search,
299
+ shown_columns,
300
+ filter_columns_type,
301
+ filter_columns_weight_precision,
302
+ filter_columns_activation_precision,
303
+ filter_columns_size,
304
+ hide_models,
305
+ search_bar,
306
+ ],
307
+ leaderboard_table,
308
+ )
309
+ # Check query parameter once at startup and update search bar + hidden component
310
+ demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
311
+
312
+ for selector in [
313
+ shown_columns,
314
+ filter_columns_type,
315
+ filter_columns_weight_precision,
316
+ filter_columns_activation_precision,
317
+ filter_columns_size,
318
+ hide_models,
319
+ ]:
320
+ selector.change(
321
+ update_table,
322
+ [
323
+ hidden_leaderboard_table_for_search,
324
+ shown_columns,
325
+ filter_columns_type,
326
+ filter_columns_weight_precision,
327
+ filter_columns_activation_precision,
328
+ filter_columns_size,
329
+ hide_models,
330
+ search_bar,
331
+ ],
332
+ leaderboard_table,
333
+ queue=True,
334
+ )
335
+
336
+ with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
337
+ with gr.Row():
338
+ with gr.Column():
339
+ chart = create_metric_plot_obj(
340
+ plot_df,
341
+ [AutoEvalColumn.average.name],
342
+ title="Average of Top Scores and Human Baseline Over Time (from last update)",
343
+ )
344
+ gr.Plot(value=chart, min_width=500)
345
+ with gr.Column():
346
+ chart = create_metric_plot_obj(
347
+ plot_df,
348
+ BENCHMARK_COLS,
349
+ title="Top Scores and Human Baseline Over Time (from last update)",
350
+ )
351
+ gr.Plot(value=chart, min_width=500)
352
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
353
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
354
+
355
+ with gr.Row():
356
+ with gr.Accordion("📙 Citation", open=False):
357
+ citation_button = gr.Textbox(
358
+ value=CITATION_BUTTON_TEXT,
359
+ label=CITATION_BUTTON_LABEL,
360
+ lines=20,
361
+ elem_id="citation-button",
362
+ show_copy_button=True,
363
+ )
364
+
365
+ scheduler = BackgroundScheduler()
366
+ scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
367
+ scheduler.start()
368
+
369
+ demo.queue(default_concurrency_limit=40).launch()
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.9.0
6
+ gradio_client==0.7.2
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ plotly==5.14.1
12
+ python-dateutil==2.8.2
13
+ requests==2.28.2
14
+ sentencepiece
15
+ tqdm==4.65.0
16
+ transformers==4.37.0
17
+ tokenizers>=0.15.0
18
+ gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/gradio-space-ci@0.2.1 # CI !!!
src/display/about.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.utils import ModelType
2
+
3
+ TITLE = """<h1 align="center" id="space-title">Neubla LLM Evaluation Board</h1>"""
4
+
5
+ INTRODUCTION_TEXT = """
6
+ 📐 The Neubla LLM Evaluation Board aims to track, rank and evaluate compressed open LLMs.
7
+
8
+ 🤗 Submit a model for automated evaluation on the 🤗 GPU cluster on the [NMOF](https://github.com/NeublaCorp/neubla_mlp/tree/develop/src/ml/pytorch/model_optimizer)!
9
+ The leaderboard's backend runs the great [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) - read more details in the "About" page!
10
+ """
11
+
12
+ LLM_BENCHMARKS_TEXT = f"""
13
+ # Context
14
+ With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
15
+
16
+ ## How it works
17
+
18
+ 📈 We evaluate models on 7 key benchmarks using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
19
+
20
+ - <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
21
+ - <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
22
+ - <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
23
+ - <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
24
+ - <a href="https://arxiv.org/abs/1907.10641" target="_blank"> Winogrande </a> (5-shot) - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
25
+ - <a href="https://arxiv.org/abs/2110.14168" target="_blank"> GSM8k </a> (5-shot) - diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
26
+
27
+ For all these evaluations, a higher score is a better score.
28
+ We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
29
+
30
+ ## Details and logs
31
+ You can find:
32
+ - detailed numerical results in the `results` Hugging Face dataset: https://huggingface.co/datasets/NMOF-evaluation-board/results
33
+
34
+ ## Reproducibility
35
+ To reproduce our results, here is the commands you can run, using [this version](https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.1) of the Eleuther AI Harness:
36
+ `lm_eval --model=hf --model_args="pretrained=<your_model>,parallelize=True,revision=<your_model_revision>"`
37
+ ` --tasks=<task_list> --num_fewshot=<n_few_shot> --batch_size=1 --output_path=<output_path>`
38
+
39
+ The total batch size we get for models which fit on one A6000 node is 8 (8 GPUs * 1). If you don't use parallelism, adapt your batch size to fit.
40
+ *You can expect results to vary slightly for different batch sizes because of padding.*
41
+
42
+ The tasks and few shots parameters are:
43
+ - ARC: 25-shot, *arc-challenge* (`acc_norm`)
44
+ - HellaSwag: 10-shot, *hellaswag* (`acc_norm`)
45
+ - TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
46
+ - MMLU: 5-shot, *mmlu_abstract_algebra,mmlu_anatomy,mmlu_astronomy,mmlu_business_ethics,mmlu_clinical_knowledge,mmlu_college_biology,mmlu_college_chemistry,mmlu_college_computer_science,mmlu_college_mathematics,mmlu_college_medicine,mmlu_college_physics,mmlu_computer_security,mmlu_conceptual_physics,mmlu_econometrics,mmlu_electrical_engineering,mmlu_elementary_mathematics,mmlu_formal_logic,mmlu_global_facts,mmlu_high_school_biology,mmlu_high_school_chemistry,mmlu_high_school_computer_science,mmlu_high_school_european_history,mmlu_high_school_geography,mmlu_high_school_government_and_politics,mmlu_high_school_macroeconomics,mmlu_high_school_mathematics,mmlu_high_school_microeconomics,mmlu_high_school_physics,mmlu_high_school_psychology,mmlu_high_school_statistics,mmlu_high_school_us_history,mmlu_high_school_world_history,mmlu_human_aging,mmlu_human_sexuality,mmlu_international_law,mmlu_jurisprudence,mmlu_logical_fallacies,mmlu_machine_learning,mmlu_management,mmlu_marketing,mmlu_medical_genetics,mmlu_miscellaneous,mmlu_moral_disputes,mmlu_moral_scenarios,mmlu_nutrition,mmlu_philosophy,mmlu_prehistory,mmlu_professional_accounting,mmlu_professional_law,mmlu_professional_medicine,mmlu_professional_psychology,mmlu_public_relations,mmlu_security_studies,mmlu_sociology,mmlu_us_foreign_policy,mmlu_virology,mmlu_world_religions* (average of all the results `acc`)
47
+ - Winogrande: 5-shot, *winogrande* (`acc`)
48
+ - GSM8k: 5-shot, *gsm8k* (`acc`)
49
+
50
+ Side note on the baseline scores:
51
+ - for log-likelihood evaluation, we select the random baseline
52
+ - for GSM8K, we select the score obtained in the paper after finetuning a 6B model on the full GSM8K training set for 50 epochs
53
+
54
+ ## Icons
55
+ - {ModelType.PT.to_str(" : ")} model: new, base models, trained on a given corpora
56
+ - {ModelType.FT.to_str(" : ")} model: pretrained models finetuned on more data
57
+ - {ModelType.chat.to_str(" : ")} model: chat like fine-tunes, either using IFT (datasets of task instruction), RLHF or DPO (changing the model loss a bit with an added policy), etc
58
+ - {ModelType.merges.to_str(" : ")} model: merges or MoErges, models which have been merged or fused without additional fine-tuning.
59
+ If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!
60
+
61
+ "Flagged" indicates that this model has been flagged by the community, and should probably be ignored! Clicking the link will redirect you to the discussion about the model.
62
+
63
+ ## Quantization
64
+
65
+ ### Weight Quantization
66
+
67
+ - INT4 Quantization (GPTQ, AWQ, ...)
68
+ - FP8 Quantization
69
+ - INT8 Quantization (SmoothQuant, Outlier Suppression+, ...)
70
+
71
+ ### Activation Quantization
72
+
73
+ - FP8 Quantization
74
+ - INT8 Quantization (SmoothQuant, Outlier Suppression+, ...)
75
+
76
+ """
77
+
78
+ FAQ_TEXT = """
79
+ ---------------------------
80
+ # FAQ
81
+ Below are some common questions - if this FAQ does not answer you, feel free to create a new issue, and we'll take care of it as soon as we can!
82
+
83
+ ## 1) Submitting a model
84
+ My model requires `trust_remote_code=True`, can I submit it?
85
+ - *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission, as we don't want to run possibly unsage code on our cluster.*
86
+
87
+ What about models of type X?
88
+ - *We only support models that have been integrated in a stable version of the `transformers` library for automatic submission.*
89
+
90
+ How can I follow when my model is launched?
91
+ - *You can look for its request file [here](https://huggingface.co/datasets/open-llm-leaderboard/requests) and follow the status evolution, or directly in the queues above the submit form.*
92
+
93
+ My model disappeared from all the queues, what happened?
94
+ - *A model disappearing from all the queues usually means that there has been a failure. You can check if that is the case by looking for your model [here](https://huggingface.co/datasets/open-llm-leaderboard/requests).*
95
+
96
+ What causes an evaluation failure?
97
+ - *Most of the failures we get come from problems in the submissions (corrupted files, config problems, wrong parameters selected for eval ...), so we'll be grateful if you first make sure you have followed the steps in `About`. However, from time to time, we have failures on our side (hardware/node failures, problem with an update of our backend, connectivity problem ending up in the results not being saved, ...).*
98
+
99
+ How can I report an evaluation failure?
100
+ - *As we store the logs for all models, feel free to create an issue, **where you link to the requests file of your model** (look for it [here](https://huggingface.co/datasets/open-llm-leaderboard/requests/tree/main)), so we can investigate! If the model failed due to a problem on our side, we'll relaunch it right away!*
101
+ *Note: Please do not re-upload your model under a different name, it will not help*
102
+
103
+ ## 2) Model results
104
+ What kind of information can I find?
105
+ - *Let's imagine you are interested in the Yi-34B results. You have access to 3 different information categories:*
106
+ - *The [request file](https://huggingface.co/datasets/open-llm-leaderboard/requests/blob/main/01-ai/Yi-34B_eval_request_False_bfloat16_Original.json): it gives you information about the status of the evaluation*
107
+ - *The [aggregated results folder](https://huggingface.co/datasets/open-llm-leaderboard/results/tree/main/01-ai/Yi-34B): it gives you aggregated scores, per experimental run*
108
+ - *The [details dataset](https://huggingface.co/datasets/open-llm-leaderboard/details_01-ai__Yi-34B/tree/main): it gives you the full details (scores and examples for each task and a given model)*
109
+
110
+
111
+ Why do models appear several times in the leaderboard?
112
+ - *We run evaluations with user selected precision and model commit. Sometimes, users submit specific models at different commits and at different precisions (for example, in float16 and 4bit to see how quantization affects performance). You should be able to verify this by displaying the `precision` and `model sha` columns in the display. If, however, you see models appearing several time with the same precision and hash commit, this is not normal.*
113
+
114
+ What is this concept of "flagging"?
115
+ - *This mechanism allows user to report models that have unfair performance on the leaderboard. This contains several categories: exceedingly good results on the leaderboard because the model was (maybe accidentally) trained on the evaluation data, models that are copy of other models not atrributed properly, etc.*
116
+
117
+ My model has been flagged improperly, what can I do?
118
+ - *Every flagged model has a discussion associated with it - feel free to plead your case there, and we'll see what to do together with the community.*
119
+
120
+ ## 3) Editing a submission
121
+ I upgraded my model and want to re-submit, how can I do that?
122
+ - *Please open an issue with the precise name of your model, and we'll remove your model from the leaderboard so you can resubmit. You can also resubmit directly with the new commit hash!*
123
+
124
+ I need to rename my model, how can I do that?
125
+ - *You can use @Weyaxi 's [super cool tool](https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-renamer) to request model name changes, then open a discussion where you link to the created pull request, and we'll check them and merge them as needed.*
126
+
127
+ ## 4) Other
128
+ Why don't you display closed source model scores?
129
+ - *This is a leaderboard for Open models, both for philosophical reasons (openness is cool) and for practical reasons: we want to ensure that the results we display are accurate and reproducible, but 1) commercial closed models can change their API thus rendering any scoring at a given time incorrect 2) we re-run everything on our cluster to ensure all models are run on the same setup and you can't do that for these models.*
130
+
131
+ I have an issue about accessing the leaderboard through the Gradio API
132
+ - *Since this is not the recommended way to access the leaderboard, we won't provide support for this, but you can look at tools provided by the community for inspiration!*
133
+ """
134
+
135
+
136
+ EVALUATION_QUEUE_TEXT = """
137
+ # Evaluation Queue for the 🤗 Open LLM Leaderboard
138
+
139
+ Models added here will be automatically evaluated on the 🤗 cluster.
140
+
141
+ ## First steps before submitting a model
142
+
143
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
144
+ ```python
145
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
146
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
147
+ model = AutoModel.from_pretrained("your model name", revision=revision)
148
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
149
+ ```
150
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
151
+
152
+ Note: make sure your model is public!
153
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
154
+
155
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
156
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
157
+
158
+ ### 3) Make sure your model has an open license!
159
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
160
+
161
+ ### 4) Fill up your model card
162
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
163
+
164
+ ### 5) Select the correct precision
165
+ Not all models are converted properly from `float16` to `bfloat16`, and selecting the wrong precision can sometimes cause evaluation error (as loading a `bf16` model in `fp16` can sometimes generate NaNs, depending on the weight range).
166
+
167
+ ## In case of model failure
168
+ If your model is displayed in the `FAILED` category, its execution stopped.
169
+ Make sure you have followed the above steps first.
170
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the command in the About tab under "Reproducibility" with all arguments specified (you can add `--limit` to limit the number of examples per task).
171
+ """
172
+
173
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
174
+ CITATION_BUTTON_TEXT = r"""
175
+ @misc{neubla-llm-evaluation-board,
176
+ author = {Minho Park and Jinsol Kim and Youngmin Joo and Byonghwa Oh and Raegeun Park and Junsang Park and Jihun Oh and Minwook Ahn},
177
+ title = {Neubla LLM Evaluation Board},
178
+ year = {2024},
179
+ publisher = {Neubla Corporation},
180
+ howpublished = "\url{https://huggingface.co/spaces/Neubla/neubla-llm-evaluation-board}"
181
+ }
182
+ @software{eval-harness,
183
+ author = {Gao, Leo and
184
+ Tow, Jonathan and
185
+ Biderman, Stella and
186
+ Black, Sid and
187
+ DiPofi, Anthony and
188
+ Foster, Charles and
189
+ Golding, Laurence and
190
+ Hsu, Jeffrey and
191
+ McDonell, Kyle and
192
+ Muennighoff, Niklas and
193
+ Phang, Jason and
194
+ Reynolds, Laria and
195
+ Tang, Eric and
196
+ Thite, Anish and
197
+ Wang, Ben and
198
+ Wang, Kevin and
199
+ Zou, Andy},
200
+ title = {A framework for few-shot language model evaluation},
201
+ month = sep,
202
+ year = 2021,
203
+ publisher = {Zenodo},
204
+ version = {v0.0.1},
205
+ doi = {10.5281/zenodo.5371628},
206
+ url = {https://doi.org/10.5281/zenodo.5371628}
207
+ }
208
+ @misc{clark2018think,
209
+ title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
210
+ author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
211
+ year={2018},
212
+ eprint={1803.05457},
213
+ archivePrefix={arXiv},
214
+ primaryClass={cs.AI}
215
+ }
216
+ @misc{zellers2019hellaswag,
217
+ title={HellaSwag: Can a Machine Really Finish Your Sentence?},
218
+ author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
219
+ year={2019},
220
+ eprint={1905.07830},
221
+ archivePrefix={arXiv},
222
+ primaryClass={cs.CL}
223
+ }
224
+ @misc{hendrycks2021measuring,
225
+ title={Measuring Massive Multitask Language Understanding},
226
+ author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
227
+ year={2021},
228
+ eprint={2009.03300},
229
+ archivePrefix={arXiv},
230
+ primaryClass={cs.CY}
231
+ }
232
+ @misc{lin2022truthfulqa,
233
+ title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
234
+ author={Stephanie Lin and Jacob Hilton and Owain Evans},
235
+ year={2022},
236
+ eprint={2109.07958},
237
+ archivePrefix={arXiv},
238
+ primaryClass={cs.CL}
239
+ }
240
+ @misc{DBLP:journals/corr/abs-1907-10641,
241
+ title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
242
+ author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
243
+ year={2019},
244
+ eprint={1907.10641},
245
+ archivePrefix={arXiv},
246
+ primaryClass={cs.CL}
247
+ }
248
+ @misc{DBLP:journals/corr/abs-2110-14168,
249
+ title={Training Verifiers to Solve Math Word Problems},
250
+ author={Karl Cobbe and
251
+ Vineet Kosaraju and
252
+ Mohammad Bavarian and
253
+ Mark Chen and
254
+ Heewoo Jun and
255
+ Lukasz Kaiser and
256
+ Matthias Plappert and
257
+ Jerry Tworek and
258
+ Jacob Hilton and
259
+ Reiichiro Nakano and
260
+ Christopher Hesse and
261
+ John Schulman},
262
+ year={2021},
263
+ eprint={2110.14168},
264
+ archivePrefix={arXiv},
265
+ primaryClass={cs.CL}
266
+ }
267
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+ /* Hides the final AutoEvalColumn */
3
+ #llm-benchmark-tab-table table td:last-child,
4
+ #llm-benchmark-tab-table table th:last-child {
5
+ display: none;
6
+ }
7
+
8
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
9
+ table td:first-child,
10
+ table th:first-child {
11
+ max-width: 400px;
12
+ overflow: auto;
13
+ white-space: nowrap;
14
+ }
15
+
16
+ /* Full width space */
17
+ .gradio-container {
18
+ max-width: 95%!important;
19
+ }
20
+
21
+ /* Text style and margins */
22
+ .markdown-text {
23
+ font-size: 16px !important;
24
+ }
25
+
26
+ #models-to-add-text {
27
+ font-size: 18px !important;
28
+ }
29
+
30
+ #citation-button span {
31
+ font-size: 16px !important;
32
+ }
33
+
34
+ #citation-button textarea {
35
+ font-size: 16px !important;
36
+ }
37
+
38
+ #citation-button > label > button {
39
+ margin: 6px;
40
+ transform: scale(1.3);
41
+ }
42
+
43
+ #search-bar-table-box > div:first-child {
44
+ background: none;
45
+ border: none;
46
+ }
47
+
48
+ #search-bar {
49
+ padding: 0px;
50
+ }
51
+
52
+ .tab-buttons button {
53
+ font-size: 20px;
54
+ }
55
+
56
+ /* Filters style */
57
+ #filter_type{
58
+ border: 0;
59
+ padding-left: 0;
60
+ padding-top: 0;
61
+ }
62
+ #filter_type label {
63
+ display: flex;
64
+ }
65
+ #filter_type label > span{
66
+ margin-top: var(--spacing-lg);
67
+ margin-right: 0.5em;
68
+ }
69
+ #filter_type label > .wrap{
70
+ width: 103px;
71
+ }
72
+ #filter_type label > .wrap .wrap-inner{
73
+ padding: 2px;
74
+ }
75
+ #filter_type label > .wrap .wrap-inner input{
76
+ width: 1px
77
+ }
78
+ #filter-columns-type{
79
+ border:0;
80
+ padding:0.5;
81
+ }
82
+ #filter-columns-size{
83
+ border:0;
84
+ padding:0.5;
85
+ }
86
+ #box-filter > .form{
87
+ border: 0
88
+ }
89
+ """
90
+
91
+ get_window_url_params = """
92
+ function(url_params) {
93
+ const params = new URLSearchParams(window.location.search);
94
+ url_params = Object.fromEntries(params);
95
+ return url_params;
96
+ }
97
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime, timezone
3
+
4
+ from huggingface_hub import HfApi
5
+ from huggingface_hub.hf_api import ModelInfo
6
+
7
+
8
+ API = HfApi()
9
+
10
+
11
+ def model_hyperlink(link, model_name):
12
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
13
+
14
+
15
+ def make_clickable_model(model_name):
16
+ link = f"https://huggingface.co/{model_name}"
17
+
18
+ details_model_name = model_name.replace("/", "__")
19
+
20
+ return model_hyperlink(link, model_name)
21
+
22
+
23
+ def styled_error(error):
24
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
25
+
26
+
27
+ def styled_warning(warn):
28
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
29
+
30
+
31
+ def styled_message(message):
32
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
33
+
34
+
35
+ def has_no_nan_values(df, columns):
36
+ return df[columns].notna().all(axis=1)
37
+
38
+
39
+ def has_nan_values(df, columns):
40
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+ from altair import Column
4
+
5
+ import pandas as pd
6
+
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ @dataclass
13
+ class Task:
14
+ benchmark: str
15
+ metric: str
16
+ col_name: str
17
+
18
+
19
+ class Tasks(Enum):
20
+ arc = Task("arc_challenge", "acc_norm", "ARC")
21
+ hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
22
+ mmlu = Task("mmlu", "acc", "MMLU")
23
+ truthfulqa = Task("truthfulqa_mc2", "acc", "TruthfulQA")
24
+ winogrande = Task("winogrande", "acc", "Winogrande")
25
+ gsm8k = Task("gsm8k", "exact_match,get-answer", "GSM8K")
26
+
27
+
28
+ # These classes are for user facing column names,
29
+ # to avoid having to change them all around the code
30
+ # when a modif is needed
31
+ @dataclass
32
+ class ColumnContent:
33
+ name: str
34
+ type: str
35
+ displayed_by_default: bool
36
+ hidden: bool = False
37
+ never_hidden: bool = False
38
+ dummy: bool = False
39
+
40
+
41
+ auto_eval_column_dict = []
42
+ # Init
43
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
44
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
45
+ # Scores
46
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
47
+ for task in Tasks:
48
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
49
+ # Model information
50
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
51
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
52
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
53
+ auto_eval_column_dict.append(["weight_precision", ColumnContent, ColumnContent("Weight Precision", "str", False)])
54
+ auto_eval_column_dict.append(
55
+ ["activation_precision", ColumnContent, ColumnContent("Activation Precision", "str", False)]
56
+ )
57
+ auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
58
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
59
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
60
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
61
+ auto_eval_column_dict.append(
62
+ ["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
63
+ )
64
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
65
+ auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
66
+ auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
67
+ # Dummy column for the search bar (hidden by the custom CSS)
68
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
69
+
70
+ # We use make dataclass to dynamically fill the scores from Tasks
71
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
72
+
73
+
74
+ @dataclass(frozen=True)
75
+ class EvalQueueColumn: # Queue column
76
+ model = ColumnContent("model", "markdown", True)
77
+ revision = ColumnContent("revision", "str", True)
78
+ private = ColumnContent("private", "bool", True)
79
+ weight_precision = ColumnContent("weight_precision", "str", True)
80
+ activation_precision = ColumnContent("activation_precision", "str", True)
81
+ weight_type = ColumnContent("weight_type", "str", "Original")
82
+ status = ColumnContent("status", "str", True)
83
+
84
+
85
+ baseline_row = {
86
+ AutoEvalColumn.model.name: "<p>Baseline</p>",
87
+ AutoEvalColumn.revision.name: "N/A",
88
+ AutoEvalColumn.weight_precision.name: None,
89
+ AutoEvalColumn.activation_precision.name: None,
90
+ AutoEvalColumn.merged.name: False,
91
+ AutoEvalColumn.average.name: 31.0,
92
+ AutoEvalColumn.arc.name: 25.0,
93
+ AutoEvalColumn.hellaswag.name: 25.0,
94
+ AutoEvalColumn.mmlu.name: 25.0,
95
+ AutoEvalColumn.truthfulqa.name: 25.0,
96
+ AutoEvalColumn.winogrande.name: 50.0,
97
+ AutoEvalColumn.gsm8k.name: 0.21,
98
+ AutoEvalColumn.dummy.name: "baseline",
99
+ AutoEvalColumn.model_type.name: "",
100
+ AutoEvalColumn.flagged.name: False,
101
+ }
102
+
103
+ # Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
104
+ # ARC human baseline is 0.80 (source: https://lab42.global/arc/)
105
+ # HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
106
+ # MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
107
+ # TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
108
+ # Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
109
+ # GSM8K: paper
110
+ # Define the human baselines
111
+ human_baseline_row = {
112
+ AutoEvalColumn.model.name: "<p>Human performance</p>",
113
+ AutoEvalColumn.revision.name: "N/A",
114
+ AutoEvalColumn.weight_precision.name: None,
115
+ AutoEvalColumn.activation_precision.name: None,
116
+ AutoEvalColumn.average.name: 92.75,
117
+ AutoEvalColumn.merged.name: False,
118
+ AutoEvalColumn.arc.name: 80.0,
119
+ AutoEvalColumn.hellaswag.name: 95.0,
120
+ AutoEvalColumn.mmlu.name: 89.8,
121
+ AutoEvalColumn.truthfulqa.name: 94.0,
122
+ AutoEvalColumn.winogrande.name: 94.0,
123
+ AutoEvalColumn.gsm8k.name: 100,
124
+ AutoEvalColumn.dummy.name: "human_baseline",
125
+ AutoEvalColumn.model_type.name: "",
126
+ AutoEvalColumn.flagged.name: False,
127
+ }
128
+
129
+
130
+ @dataclass
131
+ class ModelDetails:
132
+ name: str
133
+ symbol: str = "" # emoji, only for the model type
134
+
135
+
136
+ class ModelType(Enum):
137
+ PT = ModelDetails(name="pretrained", symbol="🟢")
138
+ FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
139
+ chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
140
+ merges = ModelDetails(name="base merges and moerges", symbol="🤝")
141
+ Unknown = ModelDetails(name="", symbol="?")
142
+
143
+ def to_str(self, separator=" "):
144
+ return f"{self.value.symbol}{separator}{self.value.name}"
145
+
146
+ @staticmethod
147
+ def from_str(type):
148
+ if "fine-tuned" in type or "🔶" in type:
149
+ return ModelType.FT
150
+ if "pretrained" in type or "🟢" in type:
151
+ return ModelType.PT
152
+ if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
153
+ return ModelType.chat
154
+ if "merge" in type or "🤝" in type:
155
+ return ModelType.merges
156
+ return ModelType.Unknown
157
+
158
+
159
+ class WeightType(Enum):
160
+ Adapter = ModelDetails("Adapter")
161
+ Original = ModelDetails("Original")
162
+ Delta = ModelDetails("Delta")
163
+
164
+
165
+ class Precision(Enum):
166
+ float32 = ModelDetails("float32")
167
+ float16 = ModelDetails("float16")
168
+ bfloat16 = ModelDetails("bfloat16")
169
+ int4 = ModelDetails("int4")
170
+ Unknown = ModelDetails("?")
171
+
172
+ def from_str(precision):
173
+ if precision in ["torch.float16", "float16"]:
174
+ return Precision.float16
175
+ if precision in ["torch.bfloat16", "bfloat16"]:
176
+ return Precision.bfloat16
177
+ if precision in ["int4"]:
178
+ return Precision.int4
179
+ if precision in ["torch.float32", "float32"]:
180
+ return Precision.float32
181
+ return Precision.Unknown
182
+
183
+
184
+ # Column selection
185
+ COLS = [c.name for c in fields(AutoEvalColumn)]
186
+ TYPES = [c.type for c in fields(AutoEvalColumn)]
187
+
188
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
189
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
190
+
191
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
192
+
193
+ NUMERIC_INTERVALS = {
194
+ "?": pd.Interval(-1, 0, closed="right"),
195
+ "~1.5": pd.Interval(0, 2, closed="right"),
196
+ "~3": pd.Interval(2, 4, closed="right"),
197
+ "~7": pd.Interval(4, 9, closed="right"),
198
+ "~13": pd.Interval(9, 20, closed="right"),
199
+ "~35": pd.Interval(20, 45, closed="right"),
200
+ "~60": pd.Interval(45, 70, closed="right"),
201
+ "70+": pd.Interval(70, 10000, closed="right"),
202
+ }
src/envs.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # clone / pull the lmeh eval data
6
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
7
+
8
+ RESULTS_REPO = "NMOF-evaluation-board/results"
9
+ REPO_ID = "NMOF-evaluation-board/llm-evaluation-boards"
10
+ CACHE_PATH = os.getenv("HF_HOME", ".")
11
+
12
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
13
+
14
+
15
+ API = HfApi()
src/leaderboard/filter_models.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.formatting import model_hyperlink
2
+ from src.display.utils import AutoEvalColumn
3
+
4
+ # Models which have been flagged by users as being problematic for a reason or another
5
+ # (Model name to forum discussion link)
6
+ FLAGGED_MODELS = {
7
+ "merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
8
+ "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
9
+ "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
10
+ "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
11
+ "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
12
+ "TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
13
+ "gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
14
+ "AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
15
+ "AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
16
+ "AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
17
+ "fblgit/una-xaberius-34b-v1beta": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/444",
18
+ "jan-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
19
+ "rwitz2/go-bruins-v2.1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
20
+ "rwitz2/go-bruins-v2.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
21
+ "GreenNode/GreenNodeLM-v3olet-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
22
+ "GreenNode/GreenNodeLM-7B-v4leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
23
+ "GreenNode/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
24
+ "viethq188/LeoScorpius-7B-Chat-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
25
+ "GreenNode/GreenNodeLM-7B-v2leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
26
+ "janai-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
27
+ "ignos/LeoScorpius-GreenNode-Alpaca-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
28
+ "fblgit/una-cybertron-7b-v3-OMA": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
29
+ "mncai/mistral-7b-dpo-merge-v1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
30
+ "mncai/mistral-7b-dpo-v6": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
31
+ "Toten5/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
32
+ "GreenNode/GreenNodeLM-7B-v1olet": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
33
+ "quantumaikr/quantum-dpo-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
34
+ "quantumaikr/quantum-v0.01": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
35
+ "quantumaikr/quantum-trinity-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
36
+ "mncai/mistral-7b-dpo-v5": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
37
+ "cookinai/BruinHermes": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
38
+ "jan-ai/Pandora-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
39
+ "v1olet/v1olet_marcoroni-go-bruins-merge-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
40
+ "v1olet/v1olet_merged_dpo_7B_v3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
41
+ "rwitz2/pee": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
42
+ "zyh3826 / GML-Mistral-merged-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/503",
43
+ "dillfrescott/trinity-medium": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
44
+ "udkai/Garrulus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/526",
45
+ "dfurman/GarrulusMarcoro-7B-v0.1": "https://huggingface.co/dfurman/GarrulusMarcoro-7B-v0.1/discussions/1",
46
+ "udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
47
+ "eren23/slerp-test-turdus-beagle": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
48
+ "abideen/NexoNimbus-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
49
+ "alnrg2arg/test2_3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
50
+ "nfaheem/Marcoroni-7b-DPO-Merge": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
51
+ "CultriX/MergeTrix-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
52
+ "liminerity/Blur-7b-v1.21": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
53
+ # Merges not indicated
54
+ "gagan3012/MetaModelv2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
55
+ "gagan3012/MetaModelv3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
56
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
57
+ "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
58
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
59
+ "kyujinpy/Sakura-SOLRCA-Instruct-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
60
+ "fblgit/LUNA-SOLARkrautLM-Instruct": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
61
+ "perlthoughts/Marcoroni-8x7B-v3-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
62
+ "rwitz/go-bruins-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
63
+ "rwitz/go-bruins": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
64
+ "Walmart-the-bag/Solar-10.7B-Cato": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
65
+ "aqweteddy/mistral_tv-neural-marconroni": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
66
+ "NExtNewChattingAI/shark_tank_ai_7_b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
67
+ "Q-bert/MetaMath-Cybertron": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
68
+ "OpenPipe/mistral-ft-optimized-1227": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
69
+ "perlthoughts/Falkor-7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
70
+ "v1olet/v1olet_merged_dpo_7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
71
+ "Ba2han/BruinsV2-OpHermesNeu-11B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
72
+ "DopeorNope/You_can_cry_Snowman-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
73
+ "PistachioAlt/Synatra-MCS-7B-v0.3-RP-Slerp": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
74
+ "Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
75
+ "Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-2-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
76
+ "perlthoughts/Falkor-8x7B-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
77
+ "elinas/chronos007-70b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
78
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Linear": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
79
+ "Weyaxi/MetaMath-neural-chat-7b-v3-2-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
80
+ "diffnamehard/Mistral-CatMacaroni-slerp-uncensored-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
81
+ "Weyaxi/neural-chat-7b-v3-1-OpenHermes-2.5-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
82
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
83
+ "Walmart-the-bag/Misted-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
84
+ "garage-bAInd/Camel-Platypus2-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
85
+ "Weyaxi/OpenOrca-Zephyr-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
86
+ "uukuguy/speechless-mistral-7b-dare-0.85": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
87
+ "DopeorNope/SOLARC-M-10.7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
88
+ "cloudyu/Mixtral_11Bx2_MoE_19B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
89
+ "DopeorNope/SOLARC-MOE-10.7Bx6 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
90
+ "DopeorNope/SOLARC-MOE-10.7Bx4": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
91
+ "gagan3012/MetaModelv2 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
92
+ "udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
93
+ "kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
94
+ "kodonho/SolarM-SakuraSolar-SLERP": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
95
+ "Yhyu13/LMCocktail-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
96
+ "mlabonne/NeuralMarcoro14-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
97
+ "Neuronovo/neuronovo-7B-v0.2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
98
+ "ryandt/MusingCaterpillar": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
99
+ "Neuronovo/neuronovo-7B-v0.3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
100
+ "SanjiWatsuki/Lelantos-DPO-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
101
+ "bardsai/jaskier-7b-dpo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
102
+ "cookinai/OpenCM-14": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
103
+ "bardsai/jaskier-7b-dpo-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
104
+ "jan-hq/supermario-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
105
+ # MoErges
106
+ "cloudyu/Yi-34Bx2-MoE-60B":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
107
+ "cloudyu/Mixtral_34Bx2_MoE_60B":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
108
+ "gagan3012/MetaModel_moe":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
109
+ "macadeliccc/SOLAR-math-2x10.7b-v0.2":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
110
+ "cloudyu/Mixtral_7Bx2_MoE":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
111
+ "macadeliccc/SOLAR-math-2x10.7b":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
112
+ "macadeliccc/Orca-SOLAR-4x10.7b":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
113
+ "macadeliccc/piccolo-8x7b":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
114
+ "cloudyu/Mixtral_7Bx4_MOE_24B":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
115
+ "macadeliccc/laser-dolphin-mixtral-2x7b-dpo":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
116
+ "macadeliccc/polyglot-math-4x7b":"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/540",
117
+ # Other - contamination mostly
118
+ "DopeorNope/COKAL-v1-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/566",
119
+ "CultriX/MistralTrix-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/556",
120
+ }
121
+
122
+ # Models which have been requested by orgs to not be submitted on the leaderboard
123
+ DO_NOT_SUBMIT_MODELS = [
124
+ "Voicelab/trurl-2-13b", # trained on MMLU
125
+ "TigerResearch/tigerbot-70b-chat", # per authors request
126
+ "TigerResearch/tigerbot-70b-chat-v2", # per authors request
127
+ "TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
128
+ ]
129
+
130
+
131
+ def flag_models(leaderboard_data: list[dict]):
132
+ for model_data in leaderboard_data:
133
+ # Merges and moes are flagged automatically
134
+ if model_data[AutoEvalColumn.flagged.name] == True:
135
+ flag_key = "merged"
136
+ else:
137
+ flag_key = model_data["model_name_for_query"]
138
+
139
+ if flag_key in FLAGGED_MODELS:
140
+ issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
141
+ issue_link = model_hyperlink(
142
+ FLAGGED_MODELS[flag_key],
143
+ f"See discussion #{issue_num}",
144
+ )
145
+ model_data[
146
+ AutoEvalColumn.model.name
147
+ ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
148
+ model_data[AutoEvalColumn.flagged.name] = True
149
+ else:
150
+ model_data[AutoEvalColumn.flagged.name] = False
151
+
152
+
153
+ def remove_forbidden_models(leaderboard_data: list[dict]):
154
+ indices_to_remove = []
155
+ for ix, model in enumerate(leaderboard_data):
156
+ if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
157
+ indices_to_remove.append(ix)
158
+
159
+ for ix in reversed(indices_to_remove):
160
+ leaderboard_data.pop(ix)
161
+ return leaderboard_data
162
+
163
+
164
+ def filter_models_flags(leaderboard_data: list[dict]):
165
+ leaderboard_data = remove_forbidden_models(leaderboard_data)
166
+ flag_models(leaderboard_data)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from huggingface_hub import ModelCard
11
+
12
+ from src.display.formatting import make_clickable_model
13
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
14
+
15
+
16
+ @dataclass
17
+ class EvalResult:
18
+ # Also see src.display.utils.AutoEvalColumn for what will be displayed.
19
+ eval_name: str # org_model_precision (uid)
20
+ full_model: str # org/model (path on hub)
21
+ org: str
22
+ model: str
23
+ revision: str # commit hash, "" if main
24
+ results: dict
25
+ weight_precision: Precision = Precision.Unknown
26
+ activation_precision: Precision = Precision.Unknown
27
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
28
+ weight_type: WeightType = WeightType.Original # Original or Adapter
29
+ architecture: str = "Unknown" # From config file
30
+ license: str = "?"
31
+ likes: int = 0
32
+ num_params: int = 0
33
+ date: str = "" # submission date of request file
34
+ still_on_hub: bool = True
35
+ is_merge: bool = False
36
+ flagged: bool = False
37
+ status: str = "FINISHED"
38
+ tags: list = None
39
+
40
+ @classmethod
41
+ def init_from_json_file(self, json_filepath):
42
+ """Inits the result from the specific model result file"""
43
+ with open(json_filepath) as fp:
44
+ data = json.load(fp)
45
+
46
+ # We manage the legacy config format
47
+ config = data.get("config_general")
48
+
49
+ try:
50
+ model_type = ModelType.from_str(config.get("model_type", "Unknown"))
51
+ weight_type = WeightType[config.get("weight_type", "Original")]
52
+ num_params = config.get("params", 0)
53
+ date = os.path.basename(json_filepath).removesuffix(".json").removeprefix("result_")
54
+ architecture = config.get("architectures", "Unknown")
55
+ tags = config.get("model_tag", None)
56
+ except Exception as e:
57
+ self.status = "FAILED"
58
+ print(f"Could not find request file for {self.org}/{self.model}")
59
+
60
+ # Precision
61
+ weight_precision = Precision.from_str(config.get("weight_precision"))
62
+ activation_precision = Precision.from_str(config.get("activation_precision"))
63
+
64
+ # Get model and org
65
+ org_and_model = config.get("model")
66
+ org_and_model = org_and_model.split("/", 1)
67
+
68
+ if len(org_and_model) == 1:
69
+ org = None
70
+ model = org_and_model[0]
71
+ result_key = f"{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
72
+ else:
73
+ org = org_and_model[0]
74
+ model = org_and_model[1]
75
+ result_key = f"{org}_{model}_W{weight_precision.value.name}A{activation_precision.value.name}"
76
+ full_model = "/".join(org_and_model)
77
+
78
+ # Extract results available in this file (some results are split in several files)
79
+ results = {}
80
+ for task in Tasks:
81
+ task = task.value
82
+ # We skip old mmlu entries
83
+ # Some truthfulQA values are NaNs
84
+ if task.benchmark == "truthfulqa_mc2" and "truthfulqa_mc2|0" in data["results"]:
85
+ if math.isnan(float(data["results"]["truthfulqa_mc2|0"][task.metric])):
86
+ results[task.benchmark] = 0.0
87
+ continue
88
+
89
+ # We average all scores of a given metric (mostly for mmlu)
90
+ if task.benchmark == "mmlu":
91
+ accs = np.array([data["results"].get(task.benchmark).get(task.metric, None)])
92
+ else:
93
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
94
+ if accs.size == 0 or any([acc is None for acc in accs]):
95
+ continue
96
+
97
+ mean_acc = np.mean(accs) * 100.0
98
+ results[task.benchmark] = mean_acc
99
+
100
+ return self(
101
+ eval_name=result_key,
102
+ full_model=full_model,
103
+ org=org,
104
+ model=model,
105
+ results=results,
106
+ weight_precision=weight_precision,
107
+ activation_precision=activation_precision,
108
+ revision=config.get("model_sha", ""),
109
+ model_type=model_type,
110
+ weight_type=weight_type,
111
+ num_params=num_params,
112
+ date=date,
113
+ architecture=architecture,
114
+ tags=tags,
115
+ )
116
+
117
+ # def update_with_request_file(self, requests_path):
118
+ # """Finds the relevant request file for the current model and updates info with it"""
119
+ # request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
120
+
121
+ # try:
122
+ # with open(request_file, "r") as f:
123
+ # request = json.load(f)
124
+ # self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
125
+ # self.weight_type = WeightType[request.get("weight_type", "Original")]
126
+ # self.num_params = request.get("params", 0)
127
+ # self.date = request.get("submitted_time", "")
128
+ # self.architecture = request.get("architectures", "Unknown")
129
+ # self.status = request.get("status", "FAILED")
130
+ # except Exception as e:
131
+ # self.status = "FAILED"
132
+ # print(f"Could not find request file for {self.org}/{self.model}")
133
+
134
+ # def update_with_dynamic_file_dict(self, file_dict):
135
+ # self.license = file_dict.get("license", "?")
136
+ # self.likes = file_dict.get("likes", 0)
137
+ # self.still_on_hub = file_dict["still_on_hub"]
138
+ # self.flagged = any("flagged" in tag for tag in file_dict["tags"])
139
+ # self.tags = file_dict["tags"]
140
+
141
+ def to_dict(self):
142
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
143
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
144
+ data_dict = {
145
+ "eval_name": self.eval_name, # not a column, just a save name,
146
+ AutoEvalColumn.weight_precision.name: self.weight_precision.value.name,
147
+ AutoEvalColumn.activation_precision.name: self.activation_precision.value.name,
148
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
149
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
150
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
151
+ AutoEvalColumn.architecture.name: self.architecture,
152
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
153
+ AutoEvalColumn.dummy.name: self.full_model,
154
+ AutoEvalColumn.revision.name: self.revision,
155
+ AutoEvalColumn.average.name: average,
156
+ AutoEvalColumn.license.name: self.license,
157
+ AutoEvalColumn.likes.name: self.likes,
158
+ AutoEvalColumn.params.name: self.num_params,
159
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
160
+ AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
161
+ AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
162
+ AutoEvalColumn.flagged.name: self.flagged,
163
+ }
164
+
165
+ for task in Tasks:
166
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
167
+
168
+ return data_dict
169
+
170
+
171
+ # def get_request_file_for_model(requests_path, model_name, precision):
172
+ # """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
173
+ # request_files = os.path.join(
174
+ # requests_path,
175
+ # f"{model_name}_eval_request_*.json",
176
+ # )
177
+ # request_files = glob.glob(request_files)
178
+
179
+ # # Select correct request file (precision)
180
+ # request_file = ""
181
+ # request_files = sorted(request_files, reverse=True)
182
+ # for tmp_request_file in request_files:
183
+ # with open(tmp_request_file, "r") as f:
184
+ # req_content = json.load(f)
185
+ # if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
186
+ # request_file = tmp_request_file
187
+ # return request_file
188
+
189
+
190
+ def get_raw_eval_results(results_path: str) -> list[EvalResult]:
191
+ """From the path of the results folder root, extract all needed info for results"""
192
+ model_result_filepaths = []
193
+
194
+ for root, _, files in os.walk(results_path):
195
+ # We should only have json files in model results
196
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
197
+ continue
198
+
199
+ # Sort the files by date
200
+ try:
201
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("result_")[:-7])
202
+ except dateutil.parser._parser.ParserError:
203
+ files = [files[-1]]
204
+
205
+ for file in files:
206
+ model_result_filepaths.append(os.path.join(root, file))
207
+
208
+ eval_results = {}
209
+ for model_result_filepath in model_result_filepaths:
210
+ # Creation of result
211
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
212
+
213
+ # Store results of same eval together
214
+ eval_name = eval_result.eval_name
215
+ if eval_name in eval_results.keys():
216
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
217
+ else:
218
+ eval_results[eval_name] = eval_result
219
+
220
+ results = []
221
+ for v in eval_results.values():
222
+ try:
223
+ if v.status == "FINISHED":
224
+ v.to_dict() # we test if the dict version is complete
225
+ results.append(v)
226
+ except KeyError: # not all eval values present
227
+ continue
228
+
229
+ return results
src/populate.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
8
+ from src.leaderboard.filter_models import filter_models_flags
9
+ from src.leaderboard.read_evals import get_raw_eval_results
10
+
11
+
12
+ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
13
+ raw_data = get_raw_eval_results(results_path=results_path)
14
+ all_data_json = [v.to_dict() for v in raw_data]
15
+ all_data_json.append(baseline_row)
16
+ filter_models_flags(all_data_json)
17
+
18
+ df = pd.DataFrame.from_records(all_data_json)
19
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
+ df = df[cols].round(decimals=2)
21
+
22
+ # filter out if any of the benchmarks have not been produced
23
+ df = df[has_no_nan_values(df, benchmark_cols)]
24
+ return raw_data, df
src/scripts/create_request_file.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ from datetime import datetime, timezone
5
+
6
+ import click
7
+ from colorama import Fore
8
+ from huggingface_hub import HfApi, snapshot_download
9
+
10
+ from src.submission.check_validity import get_model_size
11
+ from src.display.utils import ModelType, WeightType
12
+
13
+ EVAL_REQUESTS_PATH = "eval-queue"
14
+ QUEUE_REPO = "open-llm-leaderboard/requests"
15
+
16
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
17
+ model_types = [e.name for e in ModelType]
18
+ weight_types = [e.name for e in WeightType]
19
+
20
+
21
+ def main():
22
+ api = HfApi()
23
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
24
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
25
+
26
+ model_name = click.prompt("Enter model name")
27
+ revision = click.prompt("Enter revision", default="main")
28
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
29
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
30
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
31
+ base_model = click.prompt("Enter base model", default="")
32
+ status = click.prompt("Enter status", default="FINISHED")
33
+
34
+ try:
35
+ model_info = api.model_info(repo_id=model_name, revision=revision)
36
+ except Exception as e:
37
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
38
+ return 1
39
+
40
+ model_size = get_model_size(model_info=model_info, precision=precision)
41
+
42
+ try:
43
+ license = model_info.cardData["license"]
44
+ except Exception:
45
+ license = "?"
46
+
47
+ eval_entry = {
48
+ "model": model_name,
49
+ "base_model": base_model,
50
+ "revision": revision,
51
+ "private": False,
52
+ "precision": precision,
53
+ "weight_type": weight_type,
54
+ "status": status,
55
+ "submitted_time": current_time,
56
+ "model_type": model_type,
57
+ "likes": model_info.likes,
58
+ "params": model_size,
59
+ "license": license,
60
+ }
61
+
62
+ user_name = ""
63
+ model_path = model_name
64
+ if "/" in model_name:
65
+ user_name = model_name.split("/")[0]
66
+ model_path = model_name.split("/")[1]
67
+
68
+ pprint.pprint(eval_entry)
69
+
70
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
71
+ click.echo("continuing...")
72
+
73
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
74
+ os.makedirs(out_dir, exist_ok=True)
75
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
76
+
77
+ with open(out_path, "w") as f:
78
+ f.write(json.dumps(eval_entry))
79
+
80
+ api.upload_file(
81
+ path_or_fileobj=out_path,
82
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
83
+ repo_id=QUEUE_REPO,
84
+ repo_type="dataset",
85
+ commit_message=f"Add {model_name} to eval queue",
86
+ )
87
+ else:
88
+ click.echo("aborting...")
89
+
90
+
91
+ if __name__ == "__main__":
92
+ main()
src/scripts/update_all_request_files_bu.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import ModelFilter, snapshot_download
2
+ from huggingface_hub import ModelCard
3
+
4
+ import json
5
+ import time
6
+
7
+ from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags
8
+ from src.envs import API
9
+
10
+ def update_models(file_path, models):
11
+ """
12
+ Search through all JSON files in the specified root folder and its subfolders,
13
+ and update the likes key in JSON dict from value of input dict
14
+ """
15
+ with open(file_path, "r") as f:
16
+ model_infos = json.load(f)
17
+ for model_id, data in model_infos.items():
18
+ if model_id not in models:
19
+ data['still_on_hub'] = False
20
+ data['likes'] = 0
21
+ data['downloads'] = 0
22
+ data['created_at'] = ""
23
+ continue
24
+
25
+ model_cfg = models[model_id]
26
+ data['likes'] = model_cfg.likes
27
+ data['downloads'] = model_cfg.downloads
28
+ data['created_at'] = str(model_cfg.created_at)
29
+ #data['params'] = get_model_size(model_cfg, data['precision'])
30
+ data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
31
+
32
+ # Is the model still on the hub?
33
+ model_name = model_id
34
+ if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
35
+ if isinstance(model_cfg.card_data.base_model, str):
36
+ model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
37
+ still_on_hub, _, _ = is_model_on_hub(
38
+ model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=H4_TOKEN
39
+ )
40
+ # If the model doesn't have a model card or a license, we consider it's deleted
41
+ if still_on_hub:
42
+ try:
43
+ status, _, model_card = check_model_card(model_id)
44
+ if status is False:
45
+ still_on_hub = False
46
+ except Exception:
47
+ model_card = None
48
+ still_on_hub = False
49
+ data['still_on_hub'] = still_on_hub
50
+
51
+ tags = get_model_tags(model_card, model_id) if still_on_hub else []
52
+
53
+ data["tags"] = tags
54
+
55
+ with open(file_path, 'w') as f:
56
+ json.dump(model_infos, f, indent=2)
57
+
58
+ def update_dynamic_files():
59
+ """ This will only update metadata for models already linked in the repo, not add missing ones.
60
+ """
61
+ snapshot_download(
62
+ repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
63
+ )
64
+
65
+ print("UPDATE_DYNAMIC: Loaded snapshot")
66
+ # Get models
67
+ start = time.time()
68
+
69
+ models = list(API.list_models(
70
+ filter=ModelFilter(task="text-generation"),
71
+ full=False,
72
+ cardData=True,
73
+ fetch_config=True,
74
+ ))
75
+ id_to_model = {model.id : model for model in models}
76
+
77
+ print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds")
78
+
79
+ start = time.time()
80
+
81
+ update_models(DYNAMIC_INFO_FILE_PATH, id_to_model)
82
+
83
+ print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds")
84
+
85
+ API.upload_file(
86
+ path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
87
+ path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
88
+ repo_id=DYNAMIC_INFO_REPO,
89
+ repo_type="dataset",
90
+ commit_message=f"Daily request file update.",
91
+ )
92
+ print(f"UPDATE_DYNAMIC: pushed to hub")
93
+
src/submission/check_validity.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
10
+ from transformers import AutoConfig, AutoTokenizer
11
+
12
+
13
+ # ht to @Wauplin, thank you for the snippet!
14
+ # See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
15
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
16
+ # Returns operation status, and error message
17
+ try:
18
+ card = ModelCard.load(repo_id)
19
+ except huggingface_hub.utils.EntryNotFoundError:
20
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
21
+
22
+ # Enforce license metadata
23
+ if card.data.license is None:
24
+ if not ("license_name" in card.data and "license_link" in card.data):
25
+ return (
26
+ False,
27
+ (
28
+ "License not found. Please add a license to your model card using the `license` metadata or a"
29
+ " `license_name`/`license_link` pair."
30
+ ),
31
+ None,
32
+ )
33
+
34
+ # Enforce card content
35
+ if len(card.text) < 200:
36
+ return False, "Please add a description to your model card, it is too short.", None
37
+
38
+ return True, "", card
39
+
40
+
41
+ def is_model_on_hub(
42
+ model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
43
+ ) -> tuple[bool, str, AutoConfig]:
44
+ try:
45
+ config = AutoConfig.from_pretrained(
46
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
47
+ ) # , force_download=True)
48
+ if test_tokenizer:
49
+ try:
50
+ tk = AutoTokenizer.from_pretrained(
51
+ model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
52
+ )
53
+ except ValueError as e:
54
+ return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
55
+ except Exception as e:
56
+ return (
57
+ False,
58
+ "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
59
+ None,
60
+ )
61
+ return True, None, config
62
+
63
+ except ValueError as e:
64
+ return (
65
+ False,
66
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
67
+ None,
68
+ )
69
+
70
+ except Exception as e:
71
+ return False, "was not found on hub!", None
72
+
73
+
74
+ def get_model_size(model_info: ModelInfo, precision: str):
75
+ size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
76
+ safetensors = None
77
+ try:
78
+ safetensors = get_safetensors_metadata(model_info.id)
79
+ except Exception as e:
80
+ print(e)
81
+
82
+ if safetensors is not None:
83
+ model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
84
+ else:
85
+ try:
86
+ size_match = re.search(size_pattern, model_info.id.lower())
87
+ model_size = size_match.group(0)
88
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
89
+ except AttributeError as e:
90
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
91
+
92
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
93
+ model_size = size_factor * model_size
94
+ return model_size
95
+
96
+
97
+ def get_model_arch(model_info: ModelInfo):
98
+ return model_info.config.get("architectures", "Unknown")
99
+
100
+
101
+ def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
102
+ if org_or_user not in users_to_submission_dates:
103
+ return True, ""
104
+ submission_dates = sorted(users_to_submission_dates[org_or_user])
105
+
106
+ time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
107
+ submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
108
+
109
+ num_models_submitted_in_period = len(submissions_after_timelimit)
110
+
111
+ if num_models_submitted_in_period > rate_limit_quota:
112
+ error_msg = f"Organisation or user `{org_or_user}`"
113
+ error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
114
+ error_msg += f"in the last {rate_limit_period} days.\n"
115
+ error_msg += (
116
+ "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
117
+ )
118
+ return False, error_msg
119
+ return True, ""
120
+
121
+
122
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
123
+ depth = 1
124
+ file_names = []
125
+ users_to_submission_dates = defaultdict(list)
126
+
127
+ for root, _, files in os.walk(requested_models_dir):
128
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
129
+ if current_depth == depth:
130
+ for file in files:
131
+ if not file.endswith(".json"):
132
+ continue
133
+ with open(os.path.join(root, file), "r") as f:
134
+ info = json.load(f)
135
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
136
+
137
+ # Select organisation
138
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
139
+ continue
140
+ organisation, _ = info["model"].split("/")
141
+ users_to_submission_dates[organisation].append(info["submitted_time"])
142
+
143
+ return set(file_names), users_to_submission_dates
144
+
145
+
146
+ def get_model_tags(model_card, model: str):
147
+ is_merge_from_metadata = False
148
+ is_moe_from_metadata = False
149
+
150
+ tags = []
151
+ if model_card is None:
152
+ return tags
153
+ if model_card.data.tags:
154
+ is_merge_from_metadata = "merge" in model_card.data.tags
155
+ is_moe_from_metadata = "moe" in model_card.data.tags
156
+ merge_keywords = ["merged model", "merge model"]
157
+ # If the model is a merge but not saying it in the metadata, we flag it
158
+ is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
159
+ if is_merge_from_model_card or is_merge_from_metadata:
160
+ tags.append("merge")
161
+ if not is_merge_from_metadata:
162
+ tags.append("flagged:undisclosed_merge")
163
+ moe_keywords = ["moe", "mixtral"]
164
+ is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in moe_keywords)
165
+ is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
166
+ if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
167
+ tags.append("moe")
168
+ # We no longer tag undisclosed MoEs
169
+ # if not is_moe_from_metadata:
170
+ # tags.append("flagged:undisclosed_moe")
171
+
172
+ return tags
src/submission/submit.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from huggingface_hub import ModelCard, snapshot_download
6
+
7
+ from src.display.formatting import styled_error, styled_message, styled_warning
8
+ from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
9
+ from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
10
+ from src.submission.check_validity import (
11
+ already_submitted_models,
12
+ check_model_card,
13
+ get_model_size,
14
+ is_model_on_hub,
15
+ user_submission_permission,
16
+ get_model_tags
17
+ )
18
+
19
+ REQUESTED_MODELS = None
20
+ USERS_TO_SUBMISSION_DATES = None
21
+
22
+ def add_new_eval(
23
+ model: str,
24
+ base_model: str,
25
+ revision: str,
26
+ precision: str,
27
+ private: bool,
28
+ weight_type: str,
29
+ model_type: str,
30
+ ):
31
+ global REQUESTED_MODELS
32
+ global USERS_TO_SUBMISSION_DATES
33
+ if not REQUESTED_MODELS:
34
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
35
+
36
+ user_name = ""
37
+ model_path = model
38
+ if "/" in model:
39
+ user_name = model.split("/")[0]
40
+ model_path = model.split("/")[1]
41
+
42
+ precision = precision.split(" ")[0]
43
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
44
+
45
+ if model_type is None or model_type == "":
46
+ return styled_error("Please select a model type.")
47
+
48
+ # Is the user rate limited?
49
+ if user_name != "":
50
+ user_can_submit, error_msg = user_submission_permission(
51
+ user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
52
+ )
53
+ if not user_can_submit:
54
+ return styled_error(error_msg)
55
+
56
+ # Did the model authors forbid its submission to the leaderboard?
57
+ if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
58
+ return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
59
+
60
+ # Does the model actually exist?
61
+ if revision == "":
62
+ revision = "main"
63
+
64
+ # Is the model on the hub?
65
+ if weight_type in ["Delta", "Adapter"]:
66
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
67
+ if not base_model_on_hub:
68
+ return styled_error(f'Base model "{base_model}" {error}')
69
+
70
+ architecture = "?"
71
+ downloads = 0
72
+ created_at = ""
73
+ if not weight_type == "Adapter":
74
+ model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
75
+ if not model_on_hub:
76
+ return styled_error(f'Model "{model}" {error}')
77
+ if model_config is not None:
78
+ architectures = getattr(model_config, "architectures", None)
79
+ if architectures:
80
+ architecture = ";".join(architectures)
81
+ downloads = getattr(model_config, 'downloads', 0)
82
+ created_at = getattr(model_config, 'created_at', '')
83
+
84
+
85
+
86
+ # Is the model info correctly filled?
87
+ try:
88
+ model_info = API.model_info(repo_id=model, revision=revision)
89
+ except Exception:
90
+ return styled_error("Could not get your model information. Please fill it up properly.")
91
+
92
+ model_size = get_model_size(model_info=model_info, precision=precision)
93
+
94
+ # Were the model card and license filled?
95
+ try:
96
+ license = model_info.cardData["license"]
97
+ except Exception:
98
+ return styled_error("Please select a license for your model")
99
+
100
+ modelcard_OK, error_msg, model_card = check_model_card(model)
101
+ if not modelcard_OK:
102
+ return styled_error(error_msg)
103
+
104
+ tags = get_model_tags(model_card, model)
105
+
106
+ # Seems good, creating the eval
107
+ print("Adding new eval")
108
+
109
+ eval_entry = {
110
+ "model": model,
111
+ "base_model": base_model,
112
+ "revision": revision,
113
+ "private": private,
114
+ "precision": precision,
115
+ "params": model_size,
116
+ "architectures": architecture,
117
+ "weight_type": weight_type,
118
+ "status": "PENDING",
119
+ "submitted_time": current_time,
120
+ "model_type": model_type,
121
+ "job_id": -1,
122
+ "job_start_time": None,
123
+ }
124
+
125
+ supplementary_info = {
126
+ "likes": model_info.likes,
127
+ "license": license,
128
+ "still_on_hub": True,
129
+ "tags": tags,
130
+ "downloads": downloads,
131
+ "created_at": created_at
132
+ }
133
+
134
+ # Check for duplicate submission
135
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
136
+ return styled_warning("This model has been already submitted.")
137
+
138
+ print("Creating eval file")
139
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
140
+ os.makedirs(OUT_DIR, exist_ok=True)
141
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
142
+
143
+ with open(out_path, "w") as f:
144
+ f.write(json.dumps(eval_entry))
145
+
146
+ print("Uploading eval file")
147
+ API.upload_file(
148
+ path_or_fileobj=out_path,
149
+ path_in_repo=out_path.split("eval-queue/")[1],
150
+ repo_id=QUEUE_REPO,
151
+ repo_type="dataset",
152
+ commit_message=f"Add {model} to eval queue",
153
+ )
154
+
155
+ # We want to grab the latest version of the submission file to not accidentally overwrite it
156
+ snapshot_download(
157
+ repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
158
+ )
159
+
160
+ with open(DYNAMIC_INFO_FILE_PATH) as f:
161
+ all_supplementary_info = json.load(f)
162
+
163
+ all_supplementary_info[model] = supplementary_info
164
+ with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
165
+ json.dump(all_supplementary_info, f, indent=2)
166
+
167
+ API.upload_file(
168
+ path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
169
+ path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
170
+ repo_id=DYNAMIC_INFO_REPO,
171
+ repo_type="dataset",
172
+ commit_message=f"Add {model} to dynamic info queue",
173
+ )
174
+
175
+
176
+
177
+ # Remove the local file
178
+ os.remove(out_path)
179
+
180
+ return styled_message(
181
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
182
+ )
src/tools/collections.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ # Specific intervals for the collections
4
+ intervals = {
5
+ "1B": pd.Interval(0, 1.5, closed="right"),
6
+ "3B": pd.Interval(2.5, 3.5, closed="neither"),
7
+ "7B": pd.Interval(6, 8, closed="neither"),
8
+ "13B": pd.Interval(10, 14, closed="neither"),
9
+ "30B": pd.Interval(25, 35, closed="neither"),
10
+ "65B": pd.Interval(60, 70, closed="neither"),
11
+ }
src/tools/model_backlinks.py ADDED
@@ -0,0 +1,1309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models = [
2
+ "uni-tianyan/Uni-TianYan",
3
+ "fangloveskari/ORCA_LLaMA_70B_QLoRA",
4
+ "garage-bAInd/Platypus2-70B-instruct",
5
+ "upstage/Llama-2-70b-instruct-v2",
6
+ "fangloveskari/Platypus_QLoRA_LLaMA_70b",
7
+ "yeontaek/llama-2-70B-ensemble-v5",
8
+ "TheBloke/Genz-70b-GPTQ",
9
+ "TheBloke/Platypus2-70B-Instruct-GPTQ",
10
+ "psmathur/model_007",
11
+ "yeontaek/llama-2-70B-ensemble-v4",
12
+ "psmathur/orca_mini_v3_70b",
13
+ "ehartford/Samantha-1.11-70b",
14
+ "MayaPH/GodziLLa2-70B",
15
+ "psmathur/model_007_v2",
16
+ "chargoddard/MelangeA-70b",
17
+ "ehartford/Samantha-1.1-70b",
18
+ "psmathur/model_009",
19
+ "upstage/Llama-2-70b-instruct",
20
+ "yeontaek/llama-2-70B-ensemble-v7",
21
+ "yeontaek/llama-2-70B-ensemble-v6",
22
+ "chargoddard/MelangeB-70b",
23
+ "yeontaek/llama-2-70B-ensemble-v3",
24
+ "chargoddard/MelangeC-70b",
25
+ "garage-bAInd/Camel-Platypus2-70B",
26
+ "yeontaek/llama-2-70B-ensemble-v2",
27
+ "garage-bAInd/Camel-Platypus2-70B",
28
+ "migtissera/Synthia-70B-v1.2",
29
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
30
+ "quantumaikr/llama-2-70b-fb16-orca-chat-10k",
31
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
32
+ "stabilityai/StableBeluga2",
33
+ "quantumaikr/llama-2-70b-fb16-guanaco-1k",
34
+ "garage-bAInd/Camel-Platypus2-70B",
35
+ "migtissera/Synthia-70B-v1.1",
36
+ "migtissera/Synthia-70B",
37
+ "psmathur/model_101",
38
+ "augtoma/qCammel70",
39
+ "augtoma/qCammel-70",
40
+ "augtoma/qCammel-70v1",
41
+ "augtoma/qCammel-70x",
42
+ "augtoma/qCammel-70-x",
43
+ "jondurbin/airoboros-l2-70b-gpt4-1.4.1",
44
+ "dfurman/llama-2-70b-dolphin-peft",
45
+ "jondurbin/airoboros-l2-70b-2.1",
46
+ "TheBloke/llama-2-70b-Guanaco-QLoRA-fp16",
47
+ "quantumaikr/QuantumLM-llama2-70B-Korean-LoRA",
48
+ "quantumaikr/quantumairk-llama-2-70B-instruct",
49
+ "psmathur/model_420",
50
+ "psmathur/model_51",
51
+ "garage-bAInd/Camel-Platypus2-70B",
52
+ "TheBloke/Airoboros-L2-70B-2.1-GPTQ",
53
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
54
+ "garage-bAInd/Platypus2-70B",
55
+ "liuxiang886/llama2-70B-qlora-gpt4",
56
+ "upstage/llama-65b-instruct",
57
+ "quantumaikr/llama-2-70b-fb16-korean",
58
+ "NousResearch/Nous-Hermes-Llama2-70b",
59
+ "v2ray/LLaMA-2-Jannie-70B-QLoRA",
60
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
61
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
62
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
63
+ "yeontaek/llama-2-70B-ensemble-v8",
64
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
65
+ "jarradh/llama2_70b_chat_uncensored",
66
+ "WizardLM/WizardMath-70B-V1.0",
67
+ "jordiclive/Llama-2-70b-oasst-1-200",
68
+ "WizardLM/WizardMath-70B-V1.0",
69
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
70
+ "OpenLemur/lemur-70b-chat-v1",
71
+ "tiiuae/falcon-180B",
72
+ "tiiuae/falcon-180B",
73
+ "stabilityai/StableBeluga1-Delta",
74
+ "psmathur/model_42_70b",
75
+ "psmathur/test_42_70b",
76
+ "TheBloke/fiction.live-Kimiko-V2-70B-fp16",
77
+ "tiiuae/falcon-180B",
78
+ "WizardLM/WizardMath-70B-V1.0",
79
+ "tiiuae/falcon-180B-chat",
80
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
81
+ "ehartford/samantha-1.1-llama-33b",
82
+ "ajibawa-2023/scarlett-33b",
83
+ "ddobokki/Llama-2-70b-orca-200k",
84
+ "TheBloke/gpt4-alpaca-lora_mlp-65B-HF",
85
+ "tiiuae/falcon-180B-chat",
86
+ "tiiuae/falcon-180B-chat",
87
+ "tiiuae/falcon-180B",
88
+ "TheBloke/Lemur-70B-Chat-v1-GPTQ",
89
+ "NousResearch/Nous-Puffin-70B",
90
+ "WizardLM/WizardLM-70B-V1.0",
91
+ "WizardLM/WizardMath-70B-V1.0",
92
+ "meta-llama/Llama-2-70b-hf",
93
+ "TheBloke/Llama-2-70B-fp16",
94
+ "Weyaxi/llama-2-alpacagpt4-1000step",
95
+ "WizardLM/WizardLM-70B-V1.0",
96
+ "simsim314/WizardLM-70B-V1.0-HF",
97
+ "simsim314/WizardLM-70B-V1.0-HF",
98
+ "WizardLM/WizardLM-70B-V1.0",
99
+ "openbmb/UltraLM-65b",
100
+ "psmathur/model_420_preview",
101
+ "WizardLM/WizardLM-70B-V1.0",
102
+ "simsim314/WizardLM-70B-V1.0-HF",
103
+ "OpenBuddy/openbuddy-llama2-70b-v10.1-bf16",
104
+ "upstage/llama-30b-instruct-2048",
105
+ "jondurbin/airoboros-65b-gpt4-1.2",
106
+ "TheBloke/guanaco-65B-HF",
107
+ "jondurbin/airoboros-65b-gpt4-1.3",
108
+ "meta-llama/Llama-2-70b-chat-hf",
109
+ "ValiantLabs/ShiningValiant",
110
+ "Faradaylab/Aria-70B",
111
+ "lilloukas/GPlatty-30B",
112
+ "TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16",
113
+ "jondurbin/airoboros-65b-gpt4-1.4-peft",
114
+ "jondurbin/airoboros-65b-gpt4-1.4",
115
+ "jondurbin/airoboros-65b-gpt4-2.0",
116
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
117
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
118
+ "ariellee/SuperPlatty-30B",
119
+ "jondurbin/airoboros-65b-gpt4-1.4",
120
+ "jondurbin/airoboros-65b-gpt4-2.0",
121
+ "yeontaek/llama-2-70b-IA3-guanaco",
122
+ "CalderaAI/30B-Lazarus",
123
+ "Aspik101/trurl-2-13b-pl-instruct_unload",
124
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
125
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
126
+ "OpenBuddy/openbuddy-llama-65b-v8-bf16",
127
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
128
+ "h2oai/h2ogpt-research-oasst1-llama-65b",
129
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
130
+ "CalderaAI/30B-Epsilon",
131
+ "Aspik101/llama-30b-2048-instruct-PL-lora_unload",
132
+ "jondurbin/airoboros-65b-gpt4-m2.0",
133
+ "jondurbin/airoboros-65b-gpt4-m2.0",
134
+ "Aeala/Alpaca-elina-65b",
135
+ "TheBloke/robin-65b-v2-fp16",
136
+ "TheBloke/gpt4-alpaca-lora-30b-HF",
137
+ "TheBloke/Llama-2-70B-chat-GPTQ",
138
+ "upstage/llama-30b-instruct",
139
+ "OpenLemur/lemur-70b-v1",
140
+ "lmsys/vicuna-33b-v1.3",
141
+ "ausboss/llama-30b-supercot",
142
+ "ai-business/Luban-13B",
143
+ "Henk717/airochronos-33B",
144
+ "lmsys/vicuna-33b-v1.3",
145
+ "Henk717/airochronos-33B",
146
+ "bavest/fin-llama-33b-merged",
147
+ "jondurbin/airoboros-33b-gpt4-1.4",
148
+ "YeungNLP/firefly-llama-30b",
149
+ "Aspik101/30B-Lazarus-instruct-PL-lora_unload",
150
+ "uukuguy/speechless-llama2-luban-orca-platypus-13b",
151
+ "xxyyy123/test_merge_p_ov1_w0.66_w0.5_n1",
152
+ "jondurbin/airoboros-33b-gpt4-1.2",
153
+ "TheBloke/alpaca-lora-65B-HF",
154
+ "bofenghuang/vigogne-33b-instruct",
155
+ "yeontaek/llama-2-13B-ensemble-v5",
156
+ "garage-bAInd/Platypus-30B",
157
+ "Open-Orca/OpenOrca-Platypus2-13B",
158
+ "kajdun/viwaai-30b_v4",
159
+ "lilloukas/Platypus-30B",
160
+ "Open-Orca/OpenOrca-Platypus2-13B",
161
+ "Henk717/chronoboros-33B",
162
+ "jondurbin/airoboros-33b-2.1",
163
+ "HiTZ/alpaca-lora-65b-en-pt-es-ca",
164
+ "quantumaikr/QuantumLM-70B-hf",
165
+ "uukuguy/speechless-llama2-13b",
166
+ "uukuguy/speechless-llama2-hermes-orca-platypus-13b",
167
+ "openaccess-ai-collective/manticore-30b-chat-pyg-alpha",
168
+ "LLMs/WizardLM-30B-V1.0",
169
+ "TheBloke/WizardLM-30B-fp16",
170
+ "openaccess-ai-collective/hippogriff-30b-chat",
171
+ "concedo/Vicuzard-30B-Uncensored",
172
+ "TFLai/OpenOrca-Platypus2-13B-QLoRA-0.80-epoch",
173
+ "huggingface/llama-65b",
174
+ "huggyllama/llama-65b",
175
+ "gaodrew/gaodrew-llama-30b-instruct-2048-Open-Platypus-100steps",
176
+ "uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
177
+ "Sao10K/Mythical-Destroyer-V2-L2-13B",
178
+ "camel-ai/CAMEL-33B-Combined-Data",
179
+ "dsvv-cair/alpaca-cleaned-llama-30b-bf16",
180
+ "MetaIX/GPT4-X-Alpasta-30b",
181
+ "garage-bAInd/Stable-Platypus2-13B",
182
+ "TFLai/Luban-Platypus2-13B-QLora-0.80-epoch",
183
+ "TheBloke/OpenOrca-Platypus2-13B-GPTQ",
184
+ "IkariDev/Athena-tmp",
185
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
186
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
187
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
188
+ "psmathur/model_007_13b_v2",
189
+ "Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload",
190
+ "jondurbin/airoboros-33b-gpt4-m2.0",
191
+ "Sao10K/Mythical-Destroyer-L2-13B",
192
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-fp16",
193
+ "ehartford/Wizard-Vicuna-30B-Uncensored",
194
+ "TFLai/Nova-13B",
195
+ "TheBloke/robin-33B-v2-fp16",
196
+ "totally-not-an-llm/PuddleJumper-13b",
197
+ "Aeala/VicUnlocked-alpaca-30b",
198
+ "Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf",
199
+ "jondurbin/airoboros-33b-gpt4",
200
+ "jondurbin/airoboros-33b-gpt4-m2.0",
201
+ "tiiuae/falcon-40b-instruct",
202
+ "psmathur/orca_mini_v3_13b",
203
+ "Aeala/GPT4-x-AlpacaDente-30b",
204
+ "MayaPH/GodziLLa-30B",
205
+ "jondurbin/airoboros-33b-gpt4-m2.0",
206
+ "TFLai/SpeechlessV1-Nova-13B",
207
+ "yeontaek/llama-2-13B-ensemble-v4",
208
+ "ajibawa-2023/carl-33b",
209
+ "jondurbin/airoboros-33b-gpt4-2.0",
210
+ "TFLai/Stable-Platypus2-13B-QLoRA-0.80-epoch",
211
+ "jondurbin/airoboros-33b-gpt4-1.3",
212
+ "TehVenom/oasst-sft-6-llama-33b-xor-MERGED-16bit",
213
+ "TFLai/OrcaMini-Platypus2-13B-QLoRA-0.80-epoch",
214
+ "jondurbin/airoboros-33b-gpt4-2.0",
215
+ "chargoddard/Chronorctypus-Limarobormes-13b",
216
+ "jondurbin/airoboros-33b-gpt4-1.3",
217
+ "Open-Orca/OpenOrca-Platypus2-13B",
218
+ "FelixChao/vicuna-33b-coder",
219
+ "FelixChao/vicuna-33b-coder",
220
+ "Gryphe/MythoMix-L2-13b",
221
+ "Aeala/Enterredaas-33b",
222
+ "yeontaek/llama-2-13B-ensemble-v1",
223
+ "TFLai/OpenOrcaPlatypus2-Platypus2-13B-QLora-0.80-epoch",
224
+ "TFLai/Ensemble5-Platypus2-13B-QLora-0.80-epoch",
225
+ "yeontaek/llama-2-13B-ensemble-v3",
226
+ "TFLai/MythoMix-Platypus2-13B-QLoRA-0.80-epoch",
227
+ "yihan6324/llama2-13b-instructmining-40k-sharegpt",
228
+ "timdettmers/guanaco-33b-merged",
229
+ "TFLai/EnsembleV5-Nova-13B",
230
+ "circulus/Llama-2-13b-orca-v1",
231
+ "Undi95/ReMM-SLERP-L2-13B",
232
+ "Gryphe/MythoMax-L2-13b",
233
+ "stabilityai/StableBeluga-13B",
234
+ "circulus/Llama-2-13b-orca-v1",
235
+ "ehartford/WizardLM-30B-Uncensored",
236
+ "The-Face-Of-Goonery/huginnv1.2",
237
+ "TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ",
238
+ "Sao10K/Stheno-L2-13B",
239
+ "bofenghuang/vigogne-2-13b-instruct",
240
+ "The-Face-Of-Goonery/Huginn-13b-FP16",
241
+ "grimpep/L2-MythoMax22b-instruct-Falseblock",
242
+ "TFLai/Nous-Hermes-Platypus2-13B-QLoRA-0.80-epoch",
243
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v4",
244
+ "yeontaek/Platypus2xOpenOrca-13B-IA3",
245
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-ensemble",
246
+ "Open-Orca/LlongOrca-13B-16k",
247
+ "Sao10K/Stheno-Inverted-L2-13B",
248
+ "garage-bAInd/Camel-Platypus2-13B",
249
+ "digitous/Alpacino30b",
250
+ "NousResearch/Nous-Hermes-Llama2-13b",
251
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v3",
252
+ "TFLai/MythicalDestroyerV2-Platypus2-13B-QLora-0.80-epoch",
253
+ "TheBloke/VicUnlocked-30B-LoRA-HF",
254
+ "Undi95/Nous-Hermes-13B-Code",
255
+ "The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16",
256
+ "NousResearch/Nous-Hermes-Llama2-13b",
257
+ "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b",
258
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ",
259
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
260
+ "Austism/chronos-hermes-13b-v2",
261
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2.1",
262
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2",
263
+ "Gryphe/MythoLogic-L2-13b",
264
+ "augtoma/qCammel-13",
265
+ "YeungNLP/firefly-llama2-13b-v1.2",
266
+ "Aspik101/StableBeluga-13B-instruct-PL-lora_unload",
267
+ "andreaskoepf/llama2-13b-megacode2_min100",
268
+ "rombodawg/LosslessMegaCoder-llama2-13b-mini",
269
+ "yulan-team/YuLan-Chat-2-13b-fp16",
270
+ "elinas/chronos-33b",
271
+ "YeungNLP/firefly-llama2-13b",
272
+ "Sao10K/Medusa-13b",
273
+ "OptimalScale/robin-65b-v2-delta",
274
+ "minlik/chinese-alpaca-33b-merged",
275
+ "OpenAssistant/llama2-13b-megacode2-oasst",
276
+ "TheBloke/OpenAssistant-SFT-7-Llama-30B-HF",
277
+ "Undi95/UndiMix-v1-13b",
278
+ "ehartford/Samantha-1.11-13b",
279
+ "beaugogh/Llama2-13b-sharegpt4",
280
+ "Aeala/GPT4-x-AlpacaDente2-30b",
281
+ "luffycodes/nash-vicuna-13b-v1dot5-ep2-w-rag-w-simple",
282
+ "WizardLM/WizardLM-13B-V1.1",
283
+ "uukuguy/speechless-orca-platypus-coig-lite-2k-0.6e-13b",
284
+ "huggyllama/llama-30b",
285
+ "Undi95/ReMM-L2-13B-PIPPA",
286
+ "Undi95/ReMM-L2-13B",
287
+ "gaodrew/gaodrew-gorgonzola-13b",
288
+ "lmsys/vicuna-13b-v1.5",
289
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa",
290
+ "Yhyu13/llama-30B-hf-openassitant",
291
+ "huggingface/llama-30b",
292
+ "lmsys/vicuna-13b-v1.5",
293
+ "TFLai/Athena-Platypus2-13B-QLora-0.80-epoch",
294
+ "TheBloke/dromedary-65b-lora-HF",
295
+ "yeontaek/llama-2-13b-Beluga-QLoRA",
296
+ "The-Face-Of-Goonery/Huginn-13b-V4",
297
+ "The-Face-Of-Goonery/Huginn-13b-v4.5",
298
+ "The-Face-Of-Goonery/Huginn-v3-13b",
299
+ "tiiuae/falcon-40b",
300
+ "WhoTookMyAmogusNickname/NewHope_HF_not_official",
301
+ "gaodrew/OpenOrca-Platypus2-13B-thera-1250",
302
+ "SLAM-group/NewHope",
303
+ "garage-bAInd/Platypus2-13B",
304
+ "migtissera/Synthia-13B",
305
+ "elinas/chronos-13b-v2",
306
+ "mosaicml/mpt-30b-chat",
307
+ "CHIH-HUNG/llama-2-13b-OpenOrca_5w",
308
+ "uukuguy/speechless-hermes-coig-lite-13b",
309
+ "TheBloke/tulu-30B-fp16",
310
+ "uukuguy/speechless-hermes-coig-lite-13b",
311
+ "xDAN-AI/xDAN_13b_l2_lora",
312
+ "lmsys/vicuna-13b-v1.5-16k",
313
+ "openchat/openchat_v3.1",
314
+ "CHIH-HUNG/llama-2-13b-dolphin_5w",
315
+ "Aspik101/vicuna-13b-v1.5-PL-lora_unload",
316
+ "Undi95/MLewd-L2-13B",
317
+ "ehartford/minotaur-llama2-13b-qlora",
318
+ "kajdun/iubaris-13b-v3",
319
+ "TFLai/Limarp-Platypus2-13B-QLoRA-0.80-epoch",
320
+ "openchat/openchat_v3.1",
321
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.6e-13b",
322
+ "ziqingyang/chinese-alpaca-2-13b",
323
+ "TFLai/Airboros2.1-Platypus2-13B-QLora-0.80-epoch",
324
+ "yeontaek/llama-2-13b-Guanaco-QLoRA",
325
+ "lmsys/vicuna-13b-v1.5-16k",
326
+ "ehartford/based-30b",
327
+ "kingbri/airolima-chronos-grad-l2-13B",
328
+ "openchat/openchat_v3.2",
329
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.5e-13b",
330
+ "yeontaek/Platypus2-13B-LoRa",
331
+ "kingbri/chronolima-airo-grad-l2-13B",
332
+ "openchat/openchat_v3.2",
333
+ "TFLai/PuddleJumper-Platypus2-13B-QLoRA-0.80-epoch",
334
+ "shareAI/llama2-13b-Chinese-chat",
335
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
336
+ "Aspik101/Redmond-Puffin-13B-instruct-PL-lora_unload",
337
+ "yeontaek/llama-2-13B-ensemble-v6",
338
+ "WizardLM/WizardLM-13B-V1.2",
339
+ "TheBloke/WizardLM-13B-V1.1-GPTQ",
340
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
341
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
342
+ "Mikael110/llama-2-13b-guanaco-fp16",
343
+ "yeontaek/airoboros-2.1-llama-2-13B-QLoRa",
344
+ "CalderaAI/13B-Legerdemain-L2",
345
+ "grimpep/llama2-22b-wizard_vicuna",
346
+ "grimpep/llama2-22B-GPLATTY",
347
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
348
+ "yeontaek/llama-2-13b-QLoRA",
349
+ "OpenAssistant/llama2-13b-orca-8k-3319",
350
+ "TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16",
351
+ "duliadotio/dulia-13b-8k-alpha",
352
+ "Undi95/LewdEngine",
353
+ "OpenBuddy/openbuddy-llama2-13b-v8.1-fp16",
354
+ "CHIH-HUNG/llama-2-13b-open_orca_20w",
355
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
356
+ "FlagAlpha/Llama2-Chinese-13b-Chat",
357
+ "LLMs/WizardLM-13B-V1.0",
358
+ "chansung/gpt4-alpaca-lora-13b-decapoda-1024",
359
+ "TheBloke/wizardLM-13B-1.0-fp16",
360
+ "digitous/13B-Chimera",
361
+ "yeontaek/Platypus2xOpenOrcaxGuanaco-13B-LoRa",
362
+ "jondurbin/airoboros-l2-13b-2.1",
363
+ "Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b",
364
+ "TheBloke/UltraLM-13B-fp16",
365
+ "openaccess-ai-collective/minotaur-13b-fixed",
366
+ "NousResearch/Redmond-Puffin-13B",
367
+ "KoboldAI/LLaMA2-13B-Holomax",
368
+ "Lajonbot/WizardLM-13B-V1.2-PL-lora_unload",
369
+ "yeontaek/Platypus2-13B-LoRa-v2",
370
+ "TheBloke/airoboros-13B-HF",
371
+ "jondurbin/airoboros-13b",
372
+ "jjaaaww/posi_13b",
373
+ "CoolWP/llama-2-13b-guanaco-fp16",
374
+ "yeontaek/Platypus2-13B-QLoRa",
375
+ "h2oai/h2ogpt-research-oig-oasst1-512-30b",
376
+ "dfurman/llama-2-13b-guanaco-peft",
377
+ "NousResearch/Redmond-Puffin-13B",
378
+ "pe-nlp/llama-2-13b-platypus-vicuna-wizard",
379
+ "CHIH-HUNG/llama-2-13b-dolphin_20w",
380
+ "NousResearch/Nous-Hermes-13b",
381
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4",
382
+ "ehartford/Wizard-Vicuna-13B-Uncensored",
383
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-HF",
384
+ "openchat/openchat_v3.2_super",
385
+ "bhenrym14/airophin-v2-13b-PI-8k-fp16",
386
+ "openaccess-ai-collective/manticore-13b",
387
+ "The-Face-Of-Goonery/Huginn-22b-Prototype",
388
+ "jphme/Llama-2-13b-chat-german",
389
+ "grimpep/llama2-28B-Airo03",
390
+ "TheBloke/Kimiko-v2-13B-fp16",
391
+ "FPHam/Free_Sydney_13b_HF",
392
+ "lmsys/vicuna-13b-v1.3",
393
+ "FelixChao/llama2-13b-math1.1",
394
+ "CalderaAI/13B-BlueMethod",
395
+ "meta-llama/Llama-2-13b-chat-hf",
396
+ "deepse/CodeUp-Llama-2-13b-chat-hf",
397
+ "WizardLM/WizardMath-13B-V1.0",
398
+ "WizardLM/WizardMath-13B-V1.0",
399
+ "HyperbeeAI/Tulpar-7b-v0",
400
+ "xxyyy123/test_qkvo_adptor",
401
+ "xxyyy123/mc_data_30k_from_platpus_orca_7b_10k_v1_lora_qkvo_rank14_v2",
402
+ "openchat/openchat_v2_w",
403
+ "FelixChao/llama2-13b-math1.1",
404
+ "psmathur/orca_mini_v3_7b",
405
+ "TehVenom/Metharme-13b-Merged",
406
+ "xxyyy123/10k_v1_lora_qkvo_rank14_v3",
407
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
408
+ "openaccess-ai-collective/wizard-mega-13b",
409
+ "jondurbin/airoboros-13b-gpt4-1.4",
410
+ "jondurbin/airoboros-13b-gpt4-1.4-fp16",
411
+ "Monero/Manticore-13b-Chat-Pyg-Guanaco",
412
+ "FelixChao/llama2-13b-math1.2",
413
+ "chargoddard/platypus-2-22b-relora",
414
+ "FelixChao/llama2-13b-math1.2",
415
+ "Gryphe/MythoBoros-13b",
416
+ "CalderaAI/13B-Ouroboros",
417
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
418
+ "heegyu/LIMA2-13b-hf",
419
+ "digitous/13B-HyperMantis",
420
+ "Gryphe/MythoLogic-13b",
421
+ "TheBloke/Airoboros-L2-13B-2.1-GPTQ",
422
+ "chargoddard/platypus2-22b-relora",
423
+ "openchat/openchat_v2",
424
+ "yeontaek/Platypus2-13B-IA3",
425
+ "stabilityai/StableBeluga-7B",
426
+ "circulus/Llama-2-7b-orca-v1",
427
+ "budecosystem/genz-13b-v2",
428
+ "TheBloke/gpt4-x-vicuna-13B-HF",
429
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons",
430
+ "zarakiquemparte/zarafusionex-1.1-l2-7b",
431
+ "Lajonbot/tableBeluga-7B-instruct-pl-lora_unload",
432
+ "jondurbin/airoboros-13b-gpt4",
433
+ "gaodrew/gaodrew-gorgonzola-13b",
434
+ "jondurbin/airoboros-13b-gpt4-1.1",
435
+ "TheBloke/gpt4-alpaca-lora-13B-HF",
436
+ "zarakiquemparte/zarablendex-vq-l2-7b",
437
+ "openaccess-ai-collective/manticore-13b-chat-pyg",
438
+ "Lajonbot/Llama-2-13b-hf-instruct-pl-lora_unload",
439
+ "NobodyExistsOnTheInternet/PuffedLIMA13bQLORA",
440
+ "xxyyy123/10k_v1_lora_qkvo_rank28_v2",
441
+ "jondurbin/airoboros-l2-13b-gpt4-1.4.1",
442
+ "dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16",
443
+ "NobodyExistsOnTheInternet/PuffedConvo13bLoraE4",
444
+ "yihan6324/llama2-7b-instructmining-40k-sharegpt",
445
+ "CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w",
446
+ "Aeala/GPT4-x-Alpasta-13b",
447
+ "psmathur/orca_mini_v2_13b",
448
+ "YeungNLP/firefly-llama-13b",
449
+ "psmathur/orca_mini_v2_13b",
450
+ "zarakiquemparte/zarafusionix-l2-7b",
451
+ "yihan6324/llama2-7b-instructmining-60k-sharegpt",
452
+ "yihan6324/llama-2-7b-instructmining-60k-sharegpt",
453
+ "layoric/llama-2-13b-code-alpaca",
454
+ "bofenghuang/vigogne-13b-instruct",
455
+ "Lajonbot/vicuna-13b-v1.3-PL-lora_unload",
456
+ "lvkaokao/llama2-7b-hf-chat-lora-v3",
457
+ "ehartford/dolphin-llama-13b",
458
+ "YeungNLP/firefly-llama-13b-v1.2",
459
+ "TheBloke/Kimiko-13B-fp16",
460
+ "kevinpro/Vicuna-13B-CoT",
461
+ "eachadea/vicuna-13b-1.1",
462
+ "pillowtalks-ai/delta13b",
463
+ "TheBloke/vicuna-13B-1.1-HF",
464
+ "TheBloke/Vicuna-13B-CoT-fp16",
465
+ "lmsys/vicuna-13b-delta-v1.1",
466
+ "lmsys/vicuna-13b-v1.1",
467
+ "xxyyy123/20k_v1_lora_qkvo_rank14_v2",
468
+ "TheBloke/guanaco-13B-HF",
469
+ "TheBloke/vicuna-13b-v1.3.0-GPTQ",
470
+ "edor/Stable-Platypus2-mini-7B",
471
+ "totally-not-an-llm/EverythingLM-13b-V2-16k",
472
+ "zarakiquemparte/zaraxe-l2-7b",
473
+ "beaugogh/Llama2-7b-openorca-mc-v2",
474
+ "TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16",
475
+ "quantumaikr/QuantumLM",
476
+ "jondurbin/airoboros-13b-gpt4-1.2",
477
+ "TheBloke/robin-13B-v2-fp16",
478
+ "TFLai/llama-2-13b-4bit-alpaca-gpt4",
479
+ "yihan6324/llama2-7b-instructmining-orca-40k",
480
+ "dvruette/oasst-llama-13b-2-epochs",
481
+ "Open-Orca/LlongOrca-7B-16k",
482
+ "Aspik101/Nous-Hermes-13b-pl-lora_unload",
483
+ "ehartford/Samantha-1.11-CodeLlama-34b",
484
+ "nkpz/llama2-22b-chat-wizard-uncensored",
485
+ "bofenghuang/vigogne-13b-chat",
486
+ "beaugogh/Llama2-7b-openorca-mc-v1",
487
+ "OptimalScale/robin-13b-v2-delta",
488
+ "pe-nlp/llama-2-13b-vicuna-wizard",
489
+ "chargoddard/llama2-22b",
490
+ "gywy/llama2-13b-chinese-v1",
491
+ "frank098/Wizard-Vicuna-13B-juniper",
492
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
493
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-gate_up_down_proj",
494
+ "eachadea/vicuna-13b",
495
+ "yihan6324/llama2-7b-instructmining-orca-90k",
496
+ "chargoddard/llama2-22b-blocktriangular",
497
+ "luffycodes/mcq-vicuna-13b-v1.5",
498
+ "Yhyu13/chimera-inst-chat-13b-hf",
499
+ "luffycodes/mcq-vicuna-13b-v1.5",
500
+ "chargoddard/ypotryll-22b-epoch2-qlora",
501
+ "totally-not-an-llm/EverythingLM-13b-16k",
502
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
503
+ "openaccess-ai-collective/minotaur-13b",
504
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
505
+ "chargoddard/llama2-22b-blocktriangular",
506
+ "TFLai/Platypus2-13B-QLoRA-0.80-epoch",
507
+ "meta-llama/Llama-2-13b-hf",
508
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-gate_up_down_proj",
509
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
510
+ "TheBloke/Llama-2-13B-fp16",
511
+ "TaylorAI/Flash-Llama-13B",
512
+ "shareAI/bimoGPT-llama2-13b",
513
+ "wahaha1987/llama_13b_sharegpt94k_fastchat",
514
+ "openchat/openchat_8192",
515
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj",
516
+ "dvruette/llama-13b-pretrained-sft-do2",
517
+ "CHIH-HUNG/llama-2-13b-alpaca-test",
518
+ "OpenBuddy/openbuddy-llama2-13b-v11.1-bf16",
519
+ "CHIH-HUNG/llama-2-13b-FINETUNE2_TEST_2.2w",
520
+ "project-baize/baize-v2-13b",
521
+ "jondurbin/airoboros-l2-13b-gpt4-m2.0",
522
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa-v2",
523
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w",
524
+ "xzuyn/Alpacino-SuperCOT-13B",
525
+ "jondurbin/airoboros-l2-13b-gpt4-2.0",
526
+ "aiplanet/effi-13b",
527
+ "clibrain/Llama-2-13b-ft-instruct-es",
528
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w",
529
+ "bofenghuang/vigogne-2-7b-instruct",
530
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-q_k_v_o_proj",
531
+ "bofenghuang/vigogne-2-7b-chat",
532
+ "aiplanet/effi-13b",
533
+ "haonan-li/bactrian-x-llama-13b-merged",
534
+ "beaugogh/Llama2-7b-sharegpt4",
535
+ "HWERI/Llama2-7b-sharegpt4",
536
+ "jondurbin/airoboros-13b-gpt4-1.3",
537
+ "jondurbin/airoboros-c34b-2.1",
538
+ "junelee/wizard-vicuna-13b",
539
+ "TheBloke/wizard-vicuna-13B-HF",
540
+ "Open-Orca/OpenOrca-Preview1-13B",
541
+ "TheBloke/h2ogpt-oasst1-512-30B-HF",
542
+ "TheBloke/Llama-2-13B-GPTQ",
543
+ "camel-ai/CAMEL-13B-Combined-Data",
544
+ "lmsys/vicuna-7b-v1.5",
545
+ "lmsys/vicuna-7b-v1.5-16k",
546
+ "lmsys/vicuna-7b-v1.5",
547
+ "ausboss/llama-13b-supercot",
548
+ "TheBloke/tulu-13B-fp16",
549
+ "NousResearch/Nous-Hermes-llama-2-7b",
550
+ "jlevin/guanaco-13b-llama-2",
551
+ "lmsys/vicuna-7b-v1.5-16k",
552
+ "dvruette/llama-13b-pretrained",
553
+ "nkpz/llama2-22b-daydreamer-v3",
554
+ "dvruette/llama-13b-pretrained-dropout",
555
+ "jondurbin/airoboros-l2-13b-2.1",
556
+ "LLMs/Stable-Vicuna-13B",
557
+ "64bits/LexPodLM-13B",
558
+ "lizhuang144/llama_mirror_13b_v1.0",
559
+ "TheBloke/stable-vicuna-13B-HF",
560
+ "zarakiquemparte/zaraxls-l2-7b",
561
+ "TheBloke/Llama-2-13B-GPTQ",
562
+ "Kiddyz/testlm-3",
563
+ "migtissera/Synthia-7B",
564
+ "zarakiquemparte/zarablend-l2-7b",
565
+ "mosaicml/mpt-30b-instruct",
566
+ "PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged",
567
+ "vonjack/Qwen-LLaMAfied-HFTok-7B-Chat",
568
+ "l3utterfly/llama2-7b-layla",
569
+ "Lajonbot/vicuna-7b-v1.5-PL-lora_unload",
570
+ "heegyu/LIMA-13b-hf",
571
+ "frank098/WizardLM_13B_juniper",
572
+ "ashercn97/manatee-7b",
573
+ "chavinlo/gpt4-x-alpaca",
574
+ "PocketDoc/Dans-PersonalityEngine-13b",
575
+ "ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b",
576
+ "digitous/Alpacino13b",
577
+ "edor/Hermes-Platypus2-mini-7B",
578
+ "lvkaokao/llama2-7b-hf-chat-lora-v2",
579
+ "Kiddyz/testlm-1-1",
580
+ "Kiddyz/testlm",
581
+ "Kiddyz/testlm-1",
582
+ "Kiddyz/testlm2",
583
+ "radm/Philosophy-Platypus2-13b",
584
+ "aiplanet/effi-13b",
585
+ "Harshvir/Llama-2-7B-physics",
586
+ "YeungNLP/firefly-ziya-13b",
587
+ "LinkSoul/Chinese-Llama-2-7b",
588
+ "PeanutJar/LLaMa-2-PeanutButter_v10-7B",
589
+ "OpenBuddy/openbuddy-llama2-13b-v11-bf16",
590
+ "StudentLLM/Alpagasus-2-13B-QLoRA-pipeline",
591
+ "meta-llama/Llama-2-13b-hf",
592
+ "WizardLM/WizardCoder-Python-34B-V1.0",
593
+ "dvruette/llama-13b-pretrained-sft-epoch-1",
594
+ "camel-ai/CAMEL-13B-Role-Playing-Data",
595
+ "ziqingyang/chinese-llama-2-13b",
596
+ "rombodawg/LosslessMegaCoder-llama2-7b-mini",
597
+ "TheBloke/koala-13B-HF",
598
+ "lmsys/vicuna-7b-delta-v1.1",
599
+ "eachadea/vicuna-7b-1.1",
600
+ "Ejafa/vicuna_7B_vanilla_1.1",
601
+ "lvkaokao/llama2-7b-hf-chat-lora",
602
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
603
+ "Norquinal/llama-2-7b-claude-chat-rp",
604
+ "Danielbrdz/Barcenas-7b",
605
+ "heegyu/WizardVicuna2-13b-hf",
606
+ "meta-llama/Llama-2-7b-chat-hf",
607
+ "PeanutJar/LLaMa-2-PeanutButter_v14-7B",
608
+ "PeanutJar/LLaMa-2-PeanutButter_v4-7B",
609
+ "davzoku/cria-llama2-7b-v1.3",
610
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
611
+ "lvkaokao/llama2-7b-hf-instruction-lora",
612
+ "Tap-M/Luna-AI-Llama2-Uncensored",
613
+ "ehartford/Samantha-1.11-7b",
614
+ "WizardLM/WizardCoder-Python-34B-V1.0",
615
+ "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ",
616
+ "Mikael110/llama-2-7b-guanaco-fp16",
617
+ "garage-bAInd/Platypus2-7B",
618
+ "PeanutJar/LLaMa-2-PeanutButter_v18_B-7B",
619
+ "mosaicml/mpt-30b",
620
+ "garage-bAInd/Platypus2-7B",
621
+ "huggingface/llama-13b",
622
+ "dvruette/oasst-llama-13b-1000-steps",
623
+ "jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b",
624
+ "huggyllama/llama-13b",
625
+ "Voicelab/trurl-2-7b",
626
+ "TFLai/llama-13b-4bit-alpaca",
627
+ "gywy/llama2-13b-chinese-v2",
628
+ "lmsys/longchat-13b-16k",
629
+ "Aspik101/trurl-2-7b-pl-instruct_unload",
630
+ "WizardLM/WizardMath-7B-V1.0",
631
+ "Norquinal/llama-2-7b-claude-chat",
632
+ "TheTravellingEngineer/llama2-7b-chat-hf-dpo",
633
+ "HuggingFaceH4/starchat-beta",
634
+ "joehuangx/spatial-vicuna-7b-v1.5-LoRA",
635
+ "conceptofmind/LLongMA-2-13b-16k",
636
+ "tianyil1/denas-llama2",
637
+ "lmsys/vicuna-7b-v1.3",
638
+ "conceptofmind/LLongMA-2-13b-16k",
639
+ "openchat/opencoderplus",
640
+ "ajibawa-2023/scarlett-7b",
641
+ "dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged",
642
+ "psyche/kollama2-7b-v2",
643
+ "heegyu/LIMA2-7b-hf",
644
+ "dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16",
645
+ "abhishek/llama2guanacotest",
646
+ "jondurbin/airoboros-l2-7b-2.1",
647
+ "llama-anon/instruct-13b",
648
+ "FelixChao/vicuna-7B-physics",
649
+ "Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload",
650
+ "shibing624/chinese-alpaca-plus-13b-hf",
651
+ "davzoku/cria-llama2-7b-v1.3_peft",
652
+ "quantumaikr/llama-2-7b-hf-guanaco-1k",
653
+ "togethercomputer/Llama-2-7B-32K-Instruct",
654
+ "sia-ai/llama-2-7b-1-percent-open-orca-1000-steps-v0",
655
+ "TheTravellingEngineer/llama2-7b-hf-guanaco",
656
+ "Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload",
657
+ "jondurbin/airoboros-l2-7b-gpt4-1.4.1",
658
+ "wahaha1987/llama_7b_sharegpt94k_fastchat",
659
+ "FelixChao/vicuna-7B-chemical",
660
+ "TinyPixel/llama2-7b-oa",
661
+ "chaoyi-wu/MedLLaMA_13B",
662
+ "edor/Platypus2-mini-7B",
663
+ "RoversX/llama-2-7b-hf-small-shards-Samantha-V1-SFT",
664
+ "venkycs/llama-v2-7b-32kC-Security",
665
+ "psyche/kollama2-7b",
666
+ "Fredithefish/Guanaco-7B-Uncensored",
667
+ "TheTravellingEngineer/llama2-7b-chat-hf-guanaco",
668
+ "ehartford/WizardLM-13B-Uncensored",
669
+ "PocketDoc/Dans-CreepingSenseOfDoom",
670
+ "wenge-research/yayi-7b-llama2",
671
+ "georgesung/llama2_7b_chat_uncensored",
672
+ "TinyPixel/llama2-7b-instruct",
673
+ "quantumaikr/QuantumLM-7B",
674
+ "xzuyn/MedicWizard-7B",
675
+ "wenge-research/yayi-7b-llama2",
676
+ "TinyPixel/lima-test",
677
+ "elyza/ELYZA-japanese-Llama-2-7b-instruct",
678
+ "lgaalves/llama-2-7b-hf_open-platypus",
679
+ "ziqingyang/chinese-alpaca-2-7b",
680
+ "TehVenom/Pygmalion-Vicuna-1.1-7b",
681
+ "meta-llama/Llama-2-7b-hf",
682
+ "bongchoi/test-llama2-7b",
683
+ "TaylorAI/Flash-Llama-7B",
684
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
685
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
686
+ "kashif/stack-llama-2",
687
+ "PeanutJar/LLaMa-2-PeanutButter_v18_A-7B",
688
+ "ToolBench/ToolLLaMA-7b-LoRA",
689
+ "Monero/WizardLM-13b-OpenAssistant-Uncensored",
690
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
691
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
692
+ "mrm8488/llama-2-coder-7b",
693
+ "elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
694
+ "clibrain/Llama-2-7b-ft-instruct-es",
695
+ "medalpaca/medalpaca-7b",
696
+ "TheBloke/tulu-7B-fp16",
697
+ "OpenBuddy/openbuddy-openllama-13b-v7-fp16",
698
+ "TaylorAI/FLAN-Llama-7B-2_Llama2-7B-Flash_868_full_model",
699
+ "Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload",
700
+ "jondurbin/airoboros-l2-7b-gpt4-2.0",
701
+ "dhmeltzer/llama-7b-SFT_ds_eli5_1024_r_64_alpha_16_merged",
702
+ "GOAT-AI/GOAT-7B-Community",
703
+ "AtomEchoAI/AtomGPT_56k",
704
+ "julianweng/Llama-2-7b-chat-orcah",
705
+ "TehVenom/Pygmalion-13b-Merged",
706
+ "jondurbin/airoboros-7b-gpt4-1.1",
707
+ "dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged",
708
+ "bofenghuang/vigogne-7b-chat",
709
+ "lmsys/longchat-7b-v1.5-32k",
710
+ "jondurbin/airoboros-l2-7b-gpt4-m2.0",
711
+ "synapsoft/Llama-2-7b-chat-hf-flan2022-1.2M",
712
+ "jondurbin/airoboros-7b-gpt4-1.4",
713
+ "Charlie911/vicuna-7b-v1.5-lora-mctaco",
714
+ "yihan6324/instructmining-platypus-15k",
715
+ "meta-llama/Llama-2-7b-hf",
716
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
717
+ "quantumaikr/KoreanLM-hf",
718
+ "openthaigpt/openthaigpt-1.0.0-alpha-7b-chat-ckpt-hf",
719
+ "TheBloke/Llama-2-7B-GPTQ",
720
+ "TheBloke/Llama-2-7B-GPTQ",
721
+ "LLMs/AlpacaGPT4-7B-elina",
722
+ "ehartford/Wizard-Vicuna-7B-Uncensored",
723
+ "TheBloke/Wizard-Vicuna-7B-Uncensored-HF",
724
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
725
+ "golaxy/gowizardlm",
726
+ "ehartford/dolphin-llama2-7b",
727
+ "CHIH-HUNG/llama-2-7b-dolphin_10w-test",
728
+ "mncai/chatdoctor",
729
+ "psyche/kollama2-7b-v3",
730
+ "jondurbin/airoboros-7b-gpt4",
731
+ "jondurbin/airoboros-7b",
732
+ "TheBloke/airoboros-7b-gpt4-fp16",
733
+ "mosaicml/mpt-7b-8k-chat",
734
+ "elyza/ELYZA-japanese-Llama-2-7b",
735
+ "bofenghuang/vigogne-7b-instruct",
736
+ "jxhong/CAlign-alpaca-7b",
737
+ "golaxy/goims",
738
+ "jondurbin/airoboros-7b-gpt4-1.2",
739
+ "jphme/orca_mini_v2_ger_7b",
740
+ "psmathur/orca_mini_v2_7b",
741
+ "notstoic/PygmalionCoT-7b",
742
+ "golaxy/gogpt2-13b",
743
+ "golaxy/gogpt2-13b-chat",
744
+ "togethercomputer/LLaMA-2-7B-32K",
745
+ "TheBloke/wizardLM-7B-HF",
746
+ "keyfan/vicuna-chinese-replication-v1.1",
747
+ "golaxy/gogpt2-7b",
748
+ "aiplanet/effi-7b",
749
+ "arver/llama7b-qlora",
750
+ "titan087/OpenLlama13B-Guanaco",
751
+ "chavinlo/alpaca-native",
752
+ "project-baize/baize-healthcare-lora-7B",
753
+ "AlpinDale/pygmalion-instruct",
754
+ "openlm-research/open_llama_13b",
755
+ "jondurbin/airoboros-7b-gpt4-1.3",
756
+ "elyza/ELYZA-japanese-Llama-2-7b-fast",
757
+ "jondurbin/airoboros-gpt-3.5-turbo-100k-7b",
758
+ "uukuguy/speechless-codellama-orca-13b",
759
+ "bigcode/starcoderplus",
760
+ "TheBloke/guanaco-7B-HF",
761
+ "Neko-Institute-of-Science/metharme-7b",
762
+ "TigerResearch/tigerbot-7b-base",
763
+ "golaxy/gogpt-7b",
764
+ "togethercomputer/LLaMA-2-7B-32K",
765
+ "yhyhy3/open_llama_7b_v2_med_instruct",
766
+ "ajibawa-2023/carl-7b",
767
+ "stabilityai/stablelm-base-alpha-7b-v2",
768
+ "conceptofmind/LLongMA-2-7b-16k",
769
+ "TehVenom/Pygmalion_AlpacaLora-7b",
770
+ "jondurbin/airoboros-7b-gpt4-1.4.1-qlora",
771
+ "wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard",
772
+ "ausboss/llama7b-wizardlm-unfiltered",
773
+ "project-baize/baize-v2-7b",
774
+ "LMFlow/Robin-v2",
775
+ "HanningZhang/Robin-v2",
776
+ "LMFlow/Robin-7b-v2",
777
+ "OptimalScale/robin-7b-v2-delta",
778
+ "uukuguy/speechless-codellama-platypus-13b",
779
+ "jerryjalapeno/nart-100k-7b",
780
+ "wenge-research/yayi-13b-llama2",
781
+ "fireballoon/baichuan-vicuna-chinese-7b",
782
+ "jlevin/guanaco-unchained-llama-2-7b",
783
+ "csitfun/llama-7b-logicot",
784
+ "DevaMalla/llama7b_alpaca_1gpu_bf16",
785
+ "WeOpenML/PandaLM-Alpaca-7B-v1",
786
+ "illuin/test-custom-llama",
787
+ "yeontaek/WizardCoder-Python-13B-LoRa",
788
+ "ashercn97/giraffe-7b",
789
+ "mosaicml/mpt-7b-chat",
790
+ "abhishek/autotrain-llama-alpaca-peft-52508123785",
791
+ "Neko-Institute-of-Science/pygmalion-7b",
792
+ "TFLai/llama-7b-4bit-alpaca",
793
+ "huggingface/llama-7b",
794
+ "TheBloke/Planner-7B-fp16",
795
+ "shibing624/chinese-llama-plus-13b-hf",
796
+ "AGI-inc/lora_moe_7b_baseline",
797
+ "DevaMalla/llama-base-7b",
798
+ "AGI-inc/lora_moe_7b",
799
+ "togethercomputer/GPT-JT-6B-v0",
800
+ "ehartford/WizardLM-7B-Uncensored",
801
+ "shibing624/chinese-alpaca-plus-7b-hf",
802
+ "beomi/llama-2-ko-7b",
803
+ "mosaicml/mpt-7b-8k-instruct",
804
+ "Enno-Ai/ennodata-7b",
805
+ "mosaicml/mpt-7b-instruct",
806
+ "facebook/opt-iml-max-30b",
807
+ "WeOpenML/Alpaca-7B-v1",
808
+ "TheBloke/Project-Baize-v2-7B-GPTQ",
809
+ "codellama/CodeLlama-13b-Instruct-hf",
810
+ "TheBloke/CodeLlama-13B-Instruct-fp16",
811
+ "facebook/galactica-30b",
812
+ "FreedomIntelligence/phoenix-inst-chat-7b",
813
+ "openlm-research/open_llama_7b_v2",
814
+ "GeorgiaTechResearchInstitute/galpaca-30b",
815
+ "THUDM/chatglm2-6b",
816
+ "togethercomputer/GPT-JT-6B-v1",
817
+ "TheBloke/koala-7B-HF",
818
+ "nathan0/mpt_delta_tuned_model_v3",
819
+ "nathan0/mpt_delta_tuned_model_v2",
820
+ "GeorgiaTechResearchInstitute/galpaca-30b",
821
+ "JosephusCheung/Guanaco",
822
+ "shareAI/CodeLLaMA-chat-13b-Chinese",
823
+ "TigerResearch/tigerbot-7b-sft",
824
+ "Writer/InstructPalmyra-20b",
825
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
826
+ "bigscience/bloomz-7b1-mt",
827
+ "nathan0/mpt_delta_tuned_model_v3",
828
+ "VMware/open-llama-7b-open-instruct",
829
+ "baichuan-inc/Baichuan-7B",
830
+ "anas-awadalla/mpt-7b",
831
+ "mosaicml/mpt-7b",
832
+ "bigscience/bloomz-7b1",
833
+ "ziqingyang/chinese-llama-2-7b",
834
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
835
+ "wenge-research/yayi-7b",
836
+ "tiiuae/falcon-7b",
837
+ "togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1",
838
+ "togethercomputer/RedPajama-INCITE-7B-Instruct",
839
+ "TheBloke/landmark-attention-llama7b-fp16",
840
+ "togethercomputer/GPT-JT-Moderation-6B",
841
+ "h2oai/h2ogpt-gm-oasst1-en-1024-20b",
842
+ "dvruette/gpt-neox-20b-full-precision",
843
+ "TehVenom/Moderator-Chan_GPT-JT-6b",
844
+ "dvruette/oasst-gpt-neox-20b-1000-steps",
845
+ "AlekseyKorshuk/pygmalion-6b-vicuna-chatml",
846
+ "facebook/opt-66b",
847
+ "Salesforce/codegen-16B-nl",
848
+ "Vmware/open-llama-7b-v2-open-instruct",
849
+ "mosaicml/mpt-7b-storywriter",
850
+ "acrastt/Marx-3B-V2",
851
+ "openlm-research/open_llama_7b",
852
+ "Fredithefish/ReasonixPajama-3B-HF",
853
+ "togethercomputer/GPT-NeoXT-Chat-Base-20B",
854
+ "psmathur/orca_mini_13b",
855
+ "RWKV/rwkv-raven-14b",
856
+ "h2oai/h2ogpt-oasst1-512-20b",
857
+ "acrastt/Marx-3B",
858
+ "klosax/open_llama_13b_600bt_preview",
859
+ "synapsoft/Llama-2-7b-hf-flan2022-1.2M",
860
+ "OpenAssistant/oasst-sft-1-pythia-12b",
861
+ "golaxy/gogpt-7b-bloom",
862
+ "Writer/palmyra-large",
863
+ "psmathur/orca_mini_7b",
864
+ "dvruette/oasst-pythia-12b-6000-steps",
865
+ "NousResearch/CodeLlama-13b-hf",
866
+ "codellama/CodeLlama-13b-hf",
867
+ "h2oai/h2ogpt-gm-oasst1-multilang-1024-20b",
868
+ "VMware/open-llama-0.7T-7B-open-instruct-v1.1",
869
+ "dvruette/oasst-pythia-12b-flash-attn-5000-steps",
870
+ "dvruette/oasst-gpt-neox-20b-3000-steps",
871
+ "RobbeD/OpenLlama-Platypus-3B",
872
+ "facebook/opt-30b",
873
+ "acrastt/Puma-3B",
874
+ "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
875
+ "dvruette/oasst-pythia-12b-pretrained-sft",
876
+ "digitous/GPT-R",
877
+ "acrastt/Griffin-3B",
878
+ "togethercomputer/RedPajama-INCITE-Base-7B-v0.1",
879
+ "togethercomputer/RedPajama-INCITE-7B-Base",
880
+ "CobraMamba/mamba-gpt-3b-v3",
881
+ "Danielbrdz/CodeBarcenas-7b",
882
+ "l3utterfly/open-llama-3b-v2-layla",
883
+ "CobraMamba/mamba-gpt-3b-v2",
884
+ "OpenAssistant/pythia-12b-sft-v8-7k-steps",
885
+ "KoboldAI/GPT-NeoX-20B-Erebus",
886
+ "RobbeD/Orca-Platypus-3B",
887
+ "h2oai/h2ogpt-gm-oasst1-en-1024-12b",
888
+ "OpenAssistant/pythia-12b-sft-v8-2.5k-steps",
889
+ "AlekseyKorshuk/chatml-pyg-v1",
890
+ "togethercomputer/RedPajama-INCITE-Chat-7B-v0.1",
891
+ "togethercomputer/RedPajama-INCITE-7B-Chat",
892
+ "digitous/Javelin-R",
893
+ "dvruette/oasst-pythia-12b-reference",
894
+ "EleutherAI/gpt-neox-20b",
895
+ "KoboldAI/fairseq-dense-13B",
896
+ "OpenAssistant/pythia-12b-sft-v8-rlhf-2k-steps",
897
+ "codellama/CodeLlama-7b-Instruct-hf",
898
+ "digitous/Javelin-GPTJ",
899
+ "KoboldAI/GPT-NeoX-20B-Skein",
900
+ "digitous/Javalion-R",
901
+ "h2oai/h2ogpt-oasst1-512-12b",
902
+ "acrastt/Bean-3B",
903
+ "KoboldAI/GPT-J-6B-Skein",
904
+ "nomic-ai/gpt4all-j",
905
+ "databricks/dolly-v2-12b",
906
+ "TehVenom/Dolly_Shygmalion-6b-Dev_V8P2",
907
+ "databricks/dolly-v2-7b",
908
+ "Aspik101/WizardVicuna-Uncensored-3B-instruct-PL-lora_unload",
909
+ "digitous/Adventien-GPTJ",
910
+ "openlm-research/open_llama_3b_v2",
911
+ "RWKV/rwkv-4-14b-pile",
912
+ "Lazycuber/Janemalion-6B",
913
+ "OpenAssistant/pythia-12b-pre-v8-12.5k-steps",
914
+ "digitous/Janin-R",
915
+ "kfkas/Llama-2-ko-7b-Chat",
916
+ "heegyu/WizardVicuna-Uncensored-3B-0719",
917
+ "h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt",
918
+ "TaylorAI/Flash-Llama-3B",
919
+ "kfkas/Llama-2-ko-7b-Chat",
920
+ "digitous/Skegma-GPTJ",
921
+ "digitous/Javalion-GPTJ",
922
+ "Pirr/pythia-13b-deduped-green_devil",
923
+ "TehVenom/PPO_Shygmalion-V8p4_Dev-6b",
924
+ "dvruette/oasst-pythia-6.9b-4000-steps",
925
+ "heegyu/WizardVicuna-3B-0719",
926
+ "psmathur/orca_mini_3b",
927
+ "OpenAssistant/galactica-6.7b-finetuned",
928
+ "frank098/orca_mini_3b_juniper",
929
+ "PygmalionAI/pygmalion-6b",
930
+ "TehVenom/PPO_Pygway-V8p4_Dev-6b",
931
+ "TFLai/gpt-neox-20b-4bit-alpaca",
932
+ "Corianas/gpt-j-6B-Dolly",
933
+ "TehVenom/Dolly_Shygmalion-6b",
934
+ "digitous/Janin-GPTJ",
935
+ "TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4",
936
+ "EleutherAI/gpt-j-6b",
937
+ "KoboldAI/GPT-J-6B-Shinen",
938
+ "TehVenom/Dolly_Malion-6b",
939
+ "TehVenom/ChanMalion",
940
+ "Salesforce/codegen-6B-nl",
941
+ "Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4",
942
+ "KoboldAI/GPT-J-6B-Janeway",
943
+ "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
944
+ "togethercomputer/Pythia-Chat-Base-7B",
945
+ "heegyu/RedTulu-Uncensored-3B-0719",
946
+ "KoboldAI/PPO_Pygway-6b-Mix",
947
+ "KoboldAI/OPT-13B-Erebus",
948
+ "KoboldAI/fairseq-dense-6.7B",
949
+ "EleutherAI/pythia-12b-deduped",
950
+ "pszemraj/pythia-6.9b-HC3",
951
+ "Fredithefish/Guanaco-3B-Uncensored-v2",
952
+ "facebook/opt-13b",
953
+ "TehVenom/GPT-J-Pyg_PPO-6B",
954
+ "EleutherAI/pythia-6.9b-deduped",
955
+ "Devio/test-1400",
956
+ "Fredithefish/Guanaco-3B-Uncensored",
957
+ "codellama/CodeLlama-7b-hf",
958
+ "acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1",
959
+ "Fredithefish/ScarletPajama-3B-HF",
960
+ "KoboldAI/OPT-13B-Nerybus-Mix",
961
+ "YeungNLP/firefly-bloom-7b1",
962
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-RL-LoRA-8bit-test1",
963
+ "klosax/open_llama_7b_400bt_preview",
964
+ "KoboldAI/OPT-13B-Nerys-v2",
965
+ "TehVenom/PPO_Shygmalion-6b",
966
+ "amazon/LightGPT",
967
+ "KnutJaegersberg/black_goo_recipe_c",
968
+ "NousResearch/CodeLlama-7b-hf",
969
+ "togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
970
+ "heegyu/WizardVicuna-open-llama-3b-v2",
971
+ "bigscience/bloom-7b1",
972
+ "Devio/test-22B",
973
+ "RWKV/rwkv-raven-7b",
974
+ "hakurei/instruct-12b",
975
+ "CobraMamba/mamba-gpt-3b",
976
+ "KnutJaegersberg/black_goo_recipe_a",
977
+ "acrastt/OmegLLaMA-3B",
978
+ "codellama/CodeLlama-7b-Instruct-hf",
979
+ "h2oai/h2ogpt-oig-oasst1-512-6_9b",
980
+ "KoboldAI/OPT-6.7B-Erebus",
981
+ "facebook/opt-6.7b",
982
+ "KnutJaegersberg/black_goo_recipe_d",
983
+ "KnutJaegersberg/LLongMA-3b-LIMA",
984
+ "KnutJaegersberg/black_goo_recipe_b",
985
+ "KoboldAI/OPT-6.7B-Nerybus-Mix",
986
+ "health360/Healix-3B",
987
+ "EleutherAI/pythia-12b",
988
+ "Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K",
989
+ "GeorgiaTechResearchInstitute/galactica-6.7b-evol-instruct-70k",
990
+ "h2oai/h2ogpt-oig-oasst1-256-6_9b",
991
+ "ikala/bloom-zh-3b-chat",
992
+ "Taekyoon/llama2-ko-7b-test",
993
+ "anhnv125/pygmalion-6b-roleplay",
994
+ "TehVenom/DiffMerge_Pygmalion_Main-onto-V8P4",
995
+ "KoboldAI/OPT-6B-nerys-v2",
996
+ "Lazycuber/pyg-instruct-wizardlm",
997
+ "Devio/testC",
998
+ "KoboldAI/OPT-30B-Erebus",
999
+ "Fredithefish/CrimsonPajama",
1000
+ "togethercomputer/RedPajama-INCITE-Base-3B-v1",
1001
+ "bigscience/bloomz-3b",
1002
+ "conceptofmind/Open-LLongMA-3b",
1003
+ "RWKV/rwkv-4-7b-pile",
1004
+ "openlm-research/open_llama_3b",
1005
+ "ewof/koishi-instruct-3b",
1006
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-FT-LoRA-8bit-test1",
1007
+ "cerebras/Cerebras-GPT-13B",
1008
+ "EleutherAI/pythia-6.7b",
1009
+ "aisquared/chopt-2_7b",
1010
+ "Azure99/blossom-v1-3b",
1011
+ "PSanni/Deer-3b",
1012
+ "bertin-project/bertin-gpt-j-6B-alpaca",
1013
+ "OpenBuddy/openbuddy-openllama-3b-v10-bf16",
1014
+ "KoboldAI/fairseq-dense-2.7B",
1015
+ "ehartford/CodeLlama-34b-Instruct-hf",
1016
+ "codellama/CodeLlama-34b-Instruct-hf",
1017
+ "TheBloke/CodeLlama-34B-Instruct-fp16",
1018
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
1019
+ "openlm-research/open_llama_7b_700bt_preview",
1020
+ "NbAiLab/nb-gpt-j-6B-alpaca",
1021
+ "KoboldAI/OPT-2.7B-Erebus",
1022
+ "Writer/camel-5b-hf",
1023
+ "EleutherAI/pythia-2.7b",
1024
+ "facebook/xglm-7.5B",
1025
+ "EleutherAI/pythia-2.8b-deduped",
1026
+ "klosax/open_llama_3b_350bt_preview",
1027
+ "klosax/openllama-3b-350bt",
1028
+ "KoboldAI/OPT-2.7B-Nerybus-Mix",
1029
+ "KoboldAI/GPT-J-6B-Adventure",
1030
+ "cerebras/Cerebras-GPT-6.7B",
1031
+ "TFLai/pythia-2.8b-4bit-alpaca",
1032
+ "facebook/opt-2.7b",
1033
+ "KoboldAI/OPT-2.7B-Nerys-v2",
1034
+ "bigscience/bloom-3b",
1035
+ "Devio/test100",
1036
+ "RWKV/rwkv-raven-3b",
1037
+ "Azure99/blossom-v2-3b",
1038
+ "codellama/CodeLlama-34b-Python-hf",
1039
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16",
1040
+ "EleutherAI/gpt-neo-2.7B",
1041
+ "danielhanchen/open_llama_3b_600bt_preview",
1042
+ "HuggingFaceH4/starchat-alpha",
1043
+ "pythainlp/wangchanglm-7.5B-sft-en-sharded",
1044
+ "beaugogh/pythia-1.4b-deduped-sharegpt",
1045
+ "HWERI/pythia-1.4b-deduped-sharegpt",
1046
+ "OpenAssistant/stablelm-7b-sft-v7-epoch-3",
1047
+ "codellama/CodeLlama-7b-Python-hf",
1048
+ "aisquared/chopt-1_3b",
1049
+ "PygmalionAI/metharme-1.3b",
1050
+ "Linly-AI/Chinese-LLaMA-2-13B-hf",
1051
+ "chargoddard/llama-2-34b-uncode",
1052
+ "RWKV/rwkv-4-3b-pile",
1053
+ "pythainlp/wangchanglm-7.5B-sft-enth",
1054
+ "MBZUAI/LaMini-GPT-1.5B",
1055
+ "Writer/palmyra-base",
1056
+ "KoboldAI/fairseq-dense-1.3B",
1057
+ "EleutherAI/pythia-1.4b-deduped",
1058
+ "MBZUAI/lamini-neo-1.3b",
1059
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt",
1060
+ "sartmis1/starcoder-finetune-openapi",
1061
+ "MayaPH/opt-flan-iml-6.7b",
1062
+ "facebook/xglm-4.5B",
1063
+ "WizardLM/WizardCoder-15B-V1.0",
1064
+ "facebook/opt-iml-max-1.3b",
1065
+ "stabilityai/stablelm-tuned-alpha-7b",
1066
+ "aisquared/dlite-v2-1_5b",
1067
+ "stabilityai/stablelm-base-alpha-7b",
1068
+ "sartmis1/starcoder-finetune-selfinstruct",
1069
+ "lizhuang144/starcoder_mirror",
1070
+ "bigcode/starcoder",
1071
+ "TheBloke/CodeLlama-34B-Python-fp16",
1072
+ "open-llm-leaderboard/bloomz-1b7-4bit-alpaca-auto-eval-adapter-applied",
1073
+ "ehartford/CodeLlama-34b-Python-hf",
1074
+ "codellama/CodeLlama-7b-Python-hf",
1075
+ "GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct",
1076
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.0",
1077
+ "golaxy/gogpt-3b-bloom",
1078
+ "EleutherAI/pythia-1.3b",
1079
+ "codellama/CodeLlama-13b-Python-hf",
1080
+ "hakurei/lotus-12B",
1081
+ "NYTK/PULI-GPTrio",
1082
+ "facebook/opt-1.3b",
1083
+ "TheBloke/CodeLlama-13B-Python-fp16",
1084
+ "codellama/CodeLlama-13b-Python-hf",
1085
+ "RWKV/rwkv-raven-1b5",
1086
+ "PygmalionAI/pygmalion-2.7b",
1087
+ "bigscience/bloom-1b7",
1088
+ "gpt2-xl",
1089
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.1",
1090
+ "RWKV/rwkv-4-1b5-pile",
1091
+ "codellama/CodeLlama-34b-hf",
1092
+ "NousResearch/CodeLlama-34b-hf",
1093
+ "rinna/bilingual-gpt-neox-4b-8k",
1094
+ "lxe/Cerebras-GPT-2.7B-Alpaca-SP",
1095
+ "cerebras/Cerebras-GPT-2.7B",
1096
+ "jzjiao/opt-1.3b-rlhf",
1097
+ "EleutherAI/gpt-neo-1.3B",
1098
+ "aisquared/dlite-v1-1_5b",
1099
+ "Corianas/Quokka_2.7b",
1100
+ "MrNJK/gpt2-xl-sft",
1101
+ "facebook/galactica-1.3b",
1102
+ "aisquared/dlite-v2-774m",
1103
+ "EleutherAI/pythia-1b-deduped",
1104
+ "Kunhao/pile-7b-250b-tokens",
1105
+ "w601sxs/b1ade-1b",
1106
+ "rinna/bilingual-gpt-neox-4b",
1107
+ "shaohang/SparseOPT-1.3B",
1108
+ "shaohang/Sparse0.5_OPT-1.3",
1109
+ "EleutherAI/polyglot-ko-12.8b",
1110
+ "Salesforce/codegen-6B-multi",
1111
+ "bigscience/bloom-1b1",
1112
+ "TFLai/gpt-neo-1.3B-4bit-alpaca",
1113
+ "FabbriSimo01/Bloom_1b_Quantized",
1114
+ "MBZUAI/LaMini-GPT-774M",
1115
+ "Locutusque/gpt2-large-conversational",
1116
+ "Devio/test-3b",
1117
+ "stabilityai/stablelm-tuned-alpha-3b",
1118
+ "PygmalionAI/pygmalion-1.3b",
1119
+ "KoboldAI/fairseq-dense-355M",
1120
+ "Rachneet/gpt2-xl-alpaca",
1121
+ "gpt2-large",
1122
+ "Mikivis/gpt2-large-lora-sft",
1123
+ "stabilityai/stablelm-base-alpha-3b",
1124
+ "gpt2-medium",
1125
+ "Kunhao/pile-7b",
1126
+ "aisquared/dlite-v1-774m",
1127
+ "aisquared/dlite-v2-355m",
1128
+ "YeungNLP/firefly-bloom-2b6-v2",
1129
+ "KnutJaegersberg/gpt-2-xl-EvolInstruct",
1130
+ "KnutJaegersberg/galactica-orca-wizardlm-1.3b",
1131
+ "cerebras/Cerebras-GPT-1.3B",
1132
+ "FabbriSimo01/Cerebras_1.3b_Quantized",
1133
+ "facebook/xglm-1.7B",
1134
+ "EleutherAI/pythia-410m-deduped",
1135
+ "TheBloke/GPlatty-30B-SuperHOT-8K-fp16",
1136
+ "DataLinguistic/DataLinguistic-34B-V1.0",
1137
+ "Corianas/Quokka_1.3b",
1138
+ "TheTravellingEngineer/bloom-560m-RLHF-v2",
1139
+ "Corianas/1.3b",
1140
+ "RWKV/rwkv-4-430m-pile",
1141
+ "porkorbeef/Llama-2-13b-sf",
1142
+ "xhyi/PT_GPTNEO350_ATG",
1143
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ",
1144
+ "bigscience/bloomz-560m",
1145
+ "TheBloke/medalpaca-13B-GPTQ-4bit",
1146
+ "TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16",
1147
+ "aisquared/dlite-v1-355m",
1148
+ "uukuguy/speechless-codellama-orca-airoboros-13b-0.10e",
1149
+ "yhyhy3/med-orca-instruct-33b",
1150
+ "TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16",
1151
+ "TheTravellingEngineer/bloom-1b1-RLHF",
1152
+ "MBZUAI/lamini-cerebras-1.3b",
1153
+ "IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1",
1154
+ "TheBloke/WizardLM-7B-uncensored-GPTQ",
1155
+ "TheBloke/EverythingLM-13B-16K-GPTQ",
1156
+ "quantumaikr/open_llama_7b_hf",
1157
+ "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ",
1158
+ "TheBloke/WizardLM-30B-Uncensored-GPTQ",
1159
+ "IDEA-CCNL/Ziya-LLaMA-13B-v1",
1160
+ "Phind/Phind-CodeLlama-34B-v1",
1161
+ "robowaifudev/megatron-gpt2-345m",
1162
+ "MayaPH/GodziLLa-30B-instruct",
1163
+ "TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16",
1164
+ "uukuguy/speechless-codellama-orca-platypus-13b-0.10e",
1165
+ "doas/test2",
1166
+ "BreadAi/PM_modelV2",
1167
+ "bigcode/santacoder",
1168
+ "TheBloke/wizard-vicuna-13B-GPTQ",
1169
+ "porkorbeef/Llama-2-13b",
1170
+ "TehVenom/DiffMerge-DollyGPT-Pygmalion",
1171
+ "PygmalionAI/pygmalion-350m",
1172
+ "TheBloke/orca_mini_v3_7B-GPTQ",
1173
+ "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ",
1174
+ "TheBloke/WizardLM-30B-GPTQ",
1175
+ "bigscience/bloom-560m",
1176
+ "TFLai/gpt2-turkish-uncased",
1177
+ "TheBloke/guanaco-33B-GPTQ",
1178
+ "TheBloke/openchat_v2_openorca_preview-GPTQ",
1179
+ "porkorbeef/Llama-2-13b-public",
1180
+ "TheBloke/LongChat-13B-GPTQ",
1181
+ "yhyhy3/med-orca-instruct-33b",
1182
+ "TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16",
1183
+ "TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16",
1184
+ "MayaPH/FinOPT-Franklin",
1185
+ "TheBloke/WizardLM-33B-V1.0-Uncensored-GPTQ",
1186
+ "TheBloke/Project-Baize-v2-13B-GPTQ",
1187
+ "malhajar/Platypus2-70B-instruct-4bit-gptq",
1188
+ "KoboldAI/OPT-350M-Erebus",
1189
+ "rishiraj/bloom-560m-guanaco",
1190
+ "Panchovix/WizardLM-33B-V1.0-Uncensored-SuperHOT-8k",
1191
+ "doas/test5",
1192
+ "vicgalle/alpaca-7b",
1193
+ "beomi/KoAlpaca-Polyglot-5.8B",
1194
+ "Phind/Phind-CodeLlama-34B-Python-v1",
1195
+ "timdettmers/guanaco-65b-merged",
1196
+ "TheBloke/wizard-mega-13B-GPTQ",
1197
+ "MayaPH/GodziLLa-30B-plus",
1198
+ "TheBloke/Platypus-30B-SuperHOT-8K-fp16",
1199
+ "facebook/opt-350m",
1200
+ "KoboldAI/OPT-350M-Nerys-v2",
1201
+ "TheBloke/robin-33B-v2-GPTQ",
1202
+ "jaspercatapang/Echidna-30B",
1203
+ "TheBloke/llama-30b-supercot-SuperHOT-8K-fp16",
1204
+ "marcchew/test1",
1205
+ "Harshvir/LaMini-Neo-1.3B-Mental-Health_lora",
1206
+ "golaxy/gogpt-560m",
1207
+ "TheBloke/orca_mini_13B-GPTQ",
1208
+ "Panchovix/airoboros-33b-gpt4-1.2-SuperHOT-8k",
1209
+ "Aspik101/tulu-7b-instruct-pl-lora_unload",
1210
+ "Phind/Phind-CodeLlama-34B-v2",
1211
+ "BreadAi/MusePy-1-2",
1212
+ "cerebras/Cerebras-GPT-590M",
1213
+ "microsoft/CodeGPT-small-py",
1214
+ "victor123/WizardLM-13B-1.0",
1215
+ "OptimalScale/robin-65b-v2-delta",
1216
+ "voidful/changpt-bart",
1217
+ "FabbriSimo01/GPT_Large_Quantized",
1218
+ "MayaPH/FinOPT-Lincoln",
1219
+ "KoboldAI/fairseq-dense-125M",
1220
+ "SebastianSchramm/Cerebras-GPT-111M-instruction",
1221
+ "TheTravellingEngineer/bloom-560m-RLHF",
1222
+ "breadlicker45/dough-instruct-base-001",
1223
+ "WizardLM/WizardLM-30B-V1.0",
1224
+ "WizardLM/WizardLM-30B-V1.0",
1225
+ "WizardLM/WizardLM-30B-V1.0",
1226
+ "TaylorAI/Flash-Llama-30M-20001",
1227
+ "porkorbeef/Llama-2-13b-12_153950",
1228
+ "huggingtweets/bladeecity-jerma985",
1229
+ "KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct",
1230
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
1231
+ "microsoft/DialoGPT-small",
1232
+ "Corianas/590m",
1233
+ "facebook/xglm-564M",
1234
+ "EleutherAI/gpt-neo-125m",
1235
+ "EleutherAI/pythia-160m-deduped",
1236
+ "klosax/pythia-160m-deduped-step92k-193bt",
1237
+ "MBZUAI/lamini-neo-125m",
1238
+ "bigcode/tiny_starcoder_py",
1239
+ "concedo/OPT-19M-ChatSalad",
1240
+ "anton-l/gpt-j-tiny-random",
1241
+ "grantprice/Cerebras-GPT-590M-finetuned-DND",
1242
+ "deepnight-research/zsc-text",
1243
+ "WangZeJun/bloom-820m-chat",
1244
+ "cerebras/Cerebras-GPT-256M",
1245
+ "ai-forever/rugpt3large_based_on_gpt2",
1246
+ "alibidaran/medical_transcription_generator",
1247
+ "Deci/DeciCoder-1b",
1248
+ "microsoft/DialoGPT-medium",
1249
+ "ogimgio/gpt-neo-125m-neurallinguisticpioneers",
1250
+ "open-llm-leaderboard/bloom-560m-4bit-alpaca-auto-eval-adapter-applied",
1251
+ "BreadAi/gpt-YA-1-1_160M",
1252
+ "microsoft/DialoGPT-large",
1253
+ "facebook/opt-125m",
1254
+ "huggingtweets/jerma985",
1255
+ "Locutusque/gpt2-conversational-or-qa",
1256
+ "concedo/Pythia-70M-ChatSalad",
1257
+ "roneneldan/TinyStories-1M",
1258
+ "BreadAi/DiscordPy",
1259
+ "bigcode/gpt_bigcode-santacoder",
1260
+ "Tincando/fiction_story_generator",
1261
+ "klosax/pythia-70m-deduped-step44k-92bt",
1262
+ "Quake24/easyTermsSummerizer",
1263
+ "BreadAi/gpt-YA-1-1_70M",
1264
+ "EleutherAI/pythia-160m",
1265
+ "euclaise/gpt-neox-122m-minipile-digits",
1266
+ "MBZUAI/lamini-cerebras-590m",
1267
+ "nicholasKluge/Aira-124M",
1268
+ "MayaPH/FinOPT-Washington",
1269
+ "cyberagent/open-calm-large",
1270
+ "BreadAi/StoryPy",
1271
+ "EleutherAI/pythia-70m",
1272
+ "BreadAi/gpt-Youtube",
1273
+ "roneneldan/TinyStories-33M",
1274
+ "EleutherAI/pythia-70m-deduped",
1275
+ "lgaalves/gpt2_guanaco-dolly-platypus",
1276
+ "Corianas/Quokka_590m",
1277
+ "lgaalves/gpt2_platypus-dolly-guanaco",
1278
+ "cyberagent/open-calm-7b",
1279
+ "RWKV/rwkv-4-169m-pile",
1280
+ "gpt2",
1281
+ "roneneldan/TinyStories-28M",
1282
+ "lgaalves/gpt2_open-platypus",
1283
+ "gpt2",
1284
+ "SaylorTwift/gpt2_test",
1285
+ "roneneldan/TinyStories-3M",
1286
+ "nthngdy/pythia-owt2-70m-50k",
1287
+ "Corianas/256_5epoch",
1288
+ "roneneldan/TinyStories-8M",
1289
+ "lgaalves/gpt2-dolly",
1290
+ "nthngdy/pythia-owt2-70m-100k",
1291
+ "aisquared/dlite-v2-124m",
1292
+ "mncai/SGPT-1.3B-insurance-epoch10",
1293
+ "huggingtweets/gladosystem",
1294
+ "abhiramtirumala/DialoGPT-sarcastic-medium",
1295
+ "MBZUAI/lamini-cerebras-256m",
1296
+ "cerebras/Cerebras-GPT-111M",
1297
+ "uberkie/metharme-1.3b-finetuned",
1298
+ "MBZUAI/lamini-cerebras-111m",
1299
+ "psyche/kogpt",
1300
+ "Corianas/Quokka_256m",
1301
+ "vicgalle/gpt2-alpaca-gpt4",
1302
+ "aisquared/dlite-v1-124m",
1303
+ "Mikivis/xuanxuan",
1304
+ "MBZUAI/LaMini-GPT-124M",
1305
+ "vicgalle/gpt2-alpaca",
1306
+ "huashiyiqike/testmodel",
1307
+ "Corianas/111m",
1308
+ "baseline",
1309
+ ]
src/tools/plots.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import plotly.express as px
4
+ from plotly.graph_objs import Figure
5
+
6
+ from src.leaderboard.filter_models import FLAGGED_MODELS
7
+ from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS
8
+ from src.leaderboard.read_evals import EvalResult
9
+
10
+
11
+
12
+ def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
13
+ """
14
+ Generates a DataFrame containing the maximum scores until each date.
15
+
16
+ :param results_df: A DataFrame containing result information including metric scores and dates.
17
+ :return: A new DataFrame containing the maximum scores until each date for every metric.
18
+ """
19
+ # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
20
+ results_df = pd.DataFrame(raw_data)
21
+ #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
22
+ results_df.sort_values(by="date", inplace=True)
23
+
24
+ # Step 2: Initialize the scores dictionary
25
+ scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
26
+
27
+ # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
28
+ for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
29
+ current_max = 0
30
+ last_date = ""
31
+ column = task.col_name
32
+ for _, row in results_df.iterrows():
33
+ current_model = row["full_model"]
34
+ if current_model in FLAGGED_MODELS:
35
+ continue
36
+
37
+ current_date = row["date"]
38
+ if task.benchmark == "Average":
39
+ current_score = np.mean(list(row["results"].values()))
40
+ else:
41
+ current_score = row["results"][task.benchmark]
42
+
43
+ if current_score > current_max:
44
+ if current_date == last_date and len(scores[column]) > 0:
45
+ scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
46
+ else:
47
+ scores[column].append({"model": current_model, "date": current_date, "score": current_score})
48
+ current_max = current_score
49
+ last_date = current_date
50
+
51
+ # Step 4: Return all dictionaries as DataFrames
52
+ return {k: pd.DataFrame(v) for k, v in scores.items()}
53
+
54
+
55
+ def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame:
56
+ """
57
+ Transforms the scores DataFrame into a new format suitable for plotting.
58
+
59
+ :param scores_df: A DataFrame containing metric scores and dates.
60
+ :return: A new DataFrame reshaped for plotting purposes.
61
+ """
62
+ # Initialize the list to store DataFrames
63
+ dfs = []
64
+
65
+ # Iterate over the cols and create a new DataFrame for each column
66
+ for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
67
+ d = scores_df[col].reset_index(drop=True)
68
+ d["task"] = col
69
+ dfs.append(d)
70
+
71
+ # Concatenate all the created DataFrames
72
+ concat_df = pd.concat(dfs, ignore_index=True)
73
+
74
+ # Sort values by 'date'
75
+ concat_df.sort_values(by="date", inplace=True)
76
+ concat_df.reset_index(drop=True, inplace=True)
77
+ return concat_df
78
+
79
+
80
+ def create_metric_plot_obj(
81
+ df: pd.DataFrame, metrics: list[str], title: str
82
+ ) -> Figure:
83
+ """
84
+ Create a Plotly figure object with lines representing different metrics
85
+ and horizontal dotted lines representing human baselines.
86
+
87
+ :param df: The DataFrame containing the metric values, names, and dates.
88
+ :param metrics: A list of strings representing the names of the metrics
89
+ to be included in the plot.
90
+ :param title: A string representing the title of the plot.
91
+ :return: A Plotly figure object with lines representing metrics and
92
+ horizontal dotted lines representing human baselines.
93
+ """
94
+
95
+ # Filter the DataFrame based on the specified metrics
96
+ df = df[df["task"].isin(metrics)]
97
+
98
+ # Filter the human baselines based on the specified metrics
99
+ filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
100
+
101
+ # Create a line figure using plotly express with specified markers and custom data
102
+ fig = px.line(
103
+ df,
104
+ x="date",
105
+ y="score",
106
+ color="task",
107
+ markers=True,
108
+ custom_data=["task", "score", "model"],
109
+ title=title,
110
+ )
111
+
112
+ # Update hovertemplate for better hover interaction experience
113
+ fig.update_traces(
114
+ hovertemplate="<br>".join(
115
+ [
116
+ "Model Name: %{customdata[2]}",
117
+ "Metric Name: %{customdata[0]}",
118
+ "Date: %{x}",
119
+ "Metric Value: %{y}",
120
+ ]
121
+ )
122
+ )
123
+
124
+ # Update the range of the y-axis
125
+ fig.update_layout(yaxis_range=[0, 100])
126
+
127
+ # Create a dictionary to hold the color mapping for each metric
128
+ metric_color_mapping = {}
129
+
130
+ # Map each metric name to its color in the figure
131
+ for trace in fig.data:
132
+ metric_color_mapping[trace.name] = trace.line.color
133
+
134
+ # Iterate over filtered human baselines and add horizontal lines to the figure
135
+ for metric, value in filtered_human_baselines.items():
136
+ color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
137
+ location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
138
+ # Add horizontal line with matched color and positioned annotation
139
+ fig.add_hline(
140
+ y=value,
141
+ line_dash="dot",
142
+ annotation_text=f"{metric} human baseline",
143
+ annotation_position=location,
144
+ annotation_font_size=10,
145
+ annotation_font_color=color,
146
+ line_color=color,
147
+ )
148
+
149
+ return fig
150
+
151
+
152
+ # Example Usage:
153
+ # human_baselines dictionary is defined.
154
+ # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
update_dynamic.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from src.scripts.update_all_request_files import update_dynamic_files
2
+
3
+ if __name__ == "__main__":
4
+ update_dynamic_files()