Spaces:
Runtime error
Runtime error
| import os.path | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from x_transformer_1_23_2 import * | |
| import random | |
| import tqdm | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| import TMIDIX | |
| import matplotlib.pyplot as plt | |
| in_space = os.getenv("SYSTEM") == "spaces" | |
| # ================================================================================================= | |
| def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes): | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| print('Loading model...') | |
| SEQ_LEN = 8192 # Models seq len | |
| PAD_IDX = 707 # Models pad index | |
| DEVICE = 'cuda' # 'cuda' | |
| # instantiate the model | |
| model = TransformerWrapper( | |
| num_tokens = PAD_IDX+1, | |
| max_seq_len = SEQ_LEN, | |
| attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
| model.to(DEVICE) | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model.load_state_dict( | |
| torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth', | |
| map_location=DEVICE)) | |
| print('=' * 70) | |
| model.eval() | |
| if DEVICE == 'cpu': | |
| dtype = torch.bfloat16 | |
| else: | |
| dtype = torch.float16 | |
| ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
| print('Done!') | |
| print('=' * 70) | |
| fn = os.path.basename(input_midi.name) | |
| fn1 = fn.split('.')[0] | |
| input_num_tokens = max(4, min(128, input_num_tokens)) | |
| print('-' * 70) | |
| print('Input file name:', fn) | |
| print('Req num toks:', input_num_tokens) | |
| print('Conditioning type:', input_conditioning_type) | |
| print('Strip notes:', input_strip_notes) | |
| print('-' * 70) | |
| #=============================================================================== | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
| #=============================================================================== | |
| # Enhanced score notes | |
| escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
| no_drums_escore_notes = [e for e in escore_notes if e[6] < 80] | |
| if len(no_drums_escore_notes) > 0: | |
| #======================================================= | |
| # PRE-PROCESSING | |
| #=============================================================================== | |
| # Augmented enhanced score notes | |
| no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes) | |
| cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes]) | |
| clean_cscore = [] | |
| for c in cscore: | |
| pitches = [] | |
| cho = [] | |
| for cc in c: | |
| if cc[4] not in pitches: | |
| cho.append(cc) | |
| pitches.append(cc[4]) | |
| clean_cscore.append(cho) | |
| #======================================================= | |
| # FINAL PROCESSING | |
| melody_chords = [] | |
| chords = [] | |
| times = [0] | |
| durs = [] | |
| #======================================================= | |
| # MAIN PROCESSING CYCLE | |
| #======================================================= | |
| pe = clean_cscore[0][0] | |
| first_chord = True | |
| for c in clean_cscore: | |
| # Chords | |
| c.sort(key=lambda x: x[4], reverse=True) | |
| tones_chord = sorted(set([cc[4] % 12 for cc in c])) | |
| try: | |
| chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord) | |
| except: | |
| checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord) | |
| chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord) | |
| melody_chords.extend([chord_token+384]) | |
| if input_strip_notes: | |
| if len(tones_chord) > 1: | |
| chords.extend([chord_token+384]) | |
| else: | |
| chords.extend([chord_token+384]) | |
| if first_chord: | |
| melody_chords.extend([0]) | |
| first_chord = False | |
| for e in c: | |
| #======================================================= | |
| # Timings... | |
| time = e[1]-pe[1] | |
| dur = e[2] | |
| if time != 0 and time % 2 != 0: | |
| time += 1 | |
| if dur % 2 != 0: | |
| dur += 1 | |
| delta_time = int(max(0, min(255, time)) / 2) | |
| # Durations | |
| dur = int(max(0, min(255, dur)) / 2) | |
| # Pitches | |
| ptc = max(1, min(127, e[4])) | |
| #======================================================= | |
| # FINAL NOTE SEQ | |
| # Writing final note asynchronously | |
| if delta_time != 0: | |
| melody_chords.extend([delta_time, dur+128, ptc+256]) | |
| if input_strip_notes: | |
| if len(c) > 1: | |
| times.append(delta_time) | |
| durs.append(dur+128) | |
| else: | |
| times.append(delta_time) | |
| durs.append(dur+128) | |
| else: | |
| melody_chords.extend([dur+128, ptc+256]) | |
| pe = e | |
| #================================================================== | |
| print('=' * 70) | |
| print('Sample output events', melody_chords[:5]) | |
| print('=' * 70) | |
| print('Generating...') | |
| output = [] | |
| max_chords_limit = 8 | |
| temperature=0.9 | |
| num_memory_tokens=4096 | |
| output = [] | |
| idx = 0 | |
| for c in chords[:input_num_tokens]: | |
| output.append(c) | |
| if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations': | |
| output.append(times[idx]) | |
| if input_conditioning_type == 'Chords-Times-Durations': | |
| output.append(durs[idx]) | |
| x = torch.tensor([output] * 1, dtype=torch.long, device='cuda') | |
| o = 0 | |
| ncount = 0 | |
| while o < 384 and ncount < max_chords_limit: | |
| with ctx: | |
| out = model.generate(x[-num_memory_tokens:], | |
| 1, | |
| temperature=temperature, | |
| return_prime=False, | |
| verbose=False) | |
| o = out.tolist()[0][0] | |
| if 256 <= o < 384: | |
| ncount += 1 | |
| if o < 384: | |
| x = torch.cat((x, out), 1) | |
| outy = x.tolist()[0][len(output):] | |
| output.extend(outy) | |
| idx += 1 | |
| if idx == len(chords[:input_num_tokens])-1: | |
| break | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('Rendering results...') | |
| print('=' * 70) | |
| print('Sample INTs', output[:12]) | |
| print('=' * 70) | |
| out1 = output | |
| if len(out1) != 0: | |
| song = out1 | |
| song_f = [] | |
| time = 0 | |
| dur = 0 | |
| vel = 90 | |
| pitch = 0 | |
| channel = 0 | |
| patches = [0] * 16 | |
| channel = 0 | |
| for ss in song: | |
| if 0 <= ss < 128: | |
| time += ss * 32 | |
| if 128 <= ss < 256: | |
| dur = (ss-128) * 32 | |
| if 256 <= ss < 384: | |
| pitch = (ss-256) | |
| vel = max(40, pitch) | |
| song_f.append(['note', time, dur, channel, pitch, vel, 0]) | |
| fn1 = "Chords-Progressions-Transformer-Composition" | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
| output_signature = 'Chords Progressions Transformer', | |
| output_file_name = fn1, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| new_fn = fn1+'.mid' | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=soundfont, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| #======================================================== | |
| output_midi_title = str(fn1) | |
| output_midi_summary = str(song_f[:3]) | |
| output_midi = str(new_fn) | |
| output_audio = (16000, audio) | |
| output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
| print('Output MIDI file name:', output_midi) | |
| print('Output MIDI title:', output_midi_title) | |
| print('Output MIDI summary:', '') | |
| print('=' * 70) | |
| #======================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
| # ================================================================================================= | |
| if __name__ == "__main__": | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Transformer</h1>") | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords-conditioned music transformer</h1>") | |
| gr.Markdown( | |
| "\n\n" | |
| "Generate music based on chords progressions\n\n" | |
| "Check out [Chords Progressions Transformer](https://github.com/asigalov61/Chords-Progressions-Transformer) on GitHub!\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)" | |
| " for faster execution and endless generation" | |
| ) | |
| gr.Markdown("## Upload your MIDI or select a sample example MIDI") | |
| input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for") | |
| input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type") | |
| input_strip_notes = gr.Checkbox(label="Strip notes from the composition") | |
| run_btn = gr.Button("generate", variant="primary") | |
| gr.Markdown("## Generation results") | |
| output_midi_title = gr.Textbox(label="Output MIDI title") | |
| output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
| output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
| output_plot = gr.Plot(label="Output MIDI score plot") | |
| output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
| run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes], | |
| [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
| gr.Examples( | |
| [["Chords-Progressions-Transformer-Piano-Seed-1.mid", 128, "Chords", False], | |
| ["Chords-Progressions-Transformer-Piano-Seed-2.mid", 128, "Chords-Times", False], | |
| ["Chords-Progressions-Transformer-Piano-Seed-3.mid", 128, "Chords-Times-Durations", False], | |
| ["Chords-Progressions-Transformer-Piano-Seed-4.mid", 128, "Chords", False], | |
| ["Chords-Progressions-Transformer-Piano-Seed-5.mid", 128, "Chords-Times", False], | |
| ["Chords-Progressions-Transformer-Piano-Seed-6.mid", 128, "Chords-Times-Durations", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-1.mid", 128, "Chords", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-2.mid", 128, "Chords-Times", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-3.mid", 128, "Chords-Times-Durations", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-4.mid", 128, "Chords-Times", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-5.mid", 128, "Chords", False], | |
| ["Chords-Progressions-Transformer-MI-Seed-6.mid", 128, "Chords-Times-Durations", False] | |
| ], | |
| [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes], | |
| [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], | |
| GenerateAccompaniment, | |
| cache_examples=True, | |
| ) | |
| app.queue().launch() |