Spaces:
Paused
Paused
from langchain_openai.chat_models import ChatOpenAI | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain.tools.render import format_tool_to_openai_function | |
from langgraph.prebuilt import ToolExecutor,ToolInvocation | |
from typing import TypedDict, Annotated, Sequence | |
import operator | |
from langchain_core.messages import BaseMessage,FunctionMessage,HumanMessage,AIMessage | |
from langchain_community.tools import ShellTool,tool | |
import json | |
import os | |
import gradio as gr | |
os.environ["LANGCHAIN_TRACING_V2"] ="True" | |
os.environ["LANGCHAIN_API_KEY"]="ls__54e16f70b2b0455aad0f2cbf47777d30" | |
os.environ["OPENAI_API_KEY"]="20a79668d6113e99b35fcd541c65bfeaec497b8262c111bd328ef5f1ad8c6335" | |
# os.environ["OPENAI_API_KEY"]="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" | |
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com" | |
os.environ["LANGCHAIN_PROJECT"]="default" | |
os.environ['TAVILY_API_KEY'] = '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' | |
class AgentState(TypedDict): | |
messages: Annotated[Sequence[BaseMessage], operator.add] | |
import time | |
import jwt | |
def generate_token(apikey: str, exp_seconds: int): | |
try: | |
id, secret = apikey.split(".") | |
except Exception as e: | |
raise Exception("invalid apikey", e) | |
payload = { | |
"api_key": id, | |
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000, | |
"timestamp": int(round(time.time() * 1000)), | |
} | |
return jwt.encode( | |
payload, | |
secret, | |
algorithm="HS256", | |
headers={"alg": "HS256", "sign_type": "SIGN"}, | |
) | |
from langchain_openai import ChatOpenAI | |
# from jwt import generate_token | |
def get_glm(temprature): | |
llm = ChatOpenAI( | |
model_name="glm-4", | |
openai_api_base="https://open.bigmodel.cn/api/paas/v4", | |
openai_api_key=generate_token("bdc66124ffee87e2cae1aff403831c29.IfV2i1fN822Bwj7X",10000), | |
streaming=False, | |
temperature=temprature | |
) | |
return llm | |
from langchain_core.prompts import ChatPromptTemplate | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", '''你是西游餐厅经理,你叫唐僧,能为顾客提供中餐服务; | |
你有三个员工,分别是:厨师八戒,侍者沙僧,收银悟空; | |
你需要根据顾客的需求,按照流程向员工下达指令,流程如下: | |
1.当顾客表达要点菜的意愿后,先判断是否属于中餐,如果不是,委婉的拒绝服务,如果是,执行下一步骤; | |
2.向厨师八戒下达指令,让八戒做菜,请顾客稍等; | |
3.判断菜是否做完,如果还没做完,继续等待;如果做完了,执行下一步骤; | |
4.向沙僧下达指令,让沙僧把菜端给顾客;请顾客品尝; | |
5.当顾客表达吃完了或者想结账的时候,向悟空下达指令,让悟空结账; | |
6.当结账完成后,向顾客表达感谢,并结束服务。 | |
'''), | |
("assistant", "好的,我将严格遵守流程,并提供服务。") | |
]) | |
def chushi(query: str)->str: | |
'''你是餐厅厨师八戒,能根据经理的指令,做出一道菜''' | |
input={"input":query}, | |
return "厨师八戒:接到指令,开始做菜!\n...\n菜已做好!" | |
def shizhe(query: str)->str: | |
'''你是餐厅侍者沙僧,能根据经理的指令,把菜端到顾客面前''' | |
input={"input":query} | |
return "侍者沙僧:收到指令,开始送菜!\n...\n,菜已送到" | |
def shouyin(query: str)->str: | |
'''你是餐厅收银悟空,能根据经理的指令,为顾客结账''' | |
input={"input":query} | |
return "结账完成,欢迎下次光临" | |
tools=[chushi,shizhe,shouyin] | |
from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool | |
model = get_glm(0.01).bind(tools=[format_tool_to_openai_tool(tool) for tool in tools]) | |
tool_executor = ToolExecutor(tools) | |
def should_continue(state): | |
messages = state['messages'] | |
last_message = messages[-1] | |
# If there is no function call, then we finish | |
if "tool_calls" not in last_message.additional_kwargs: | |
return "end" | |
# Otherwise if there is, we continue | |
else: | |
return "continue" | |
# Define the function that calls the model | |
def call_model(state): | |
# global history | |
messages = state['messages'] | |
response = model.invoke(messages) | |
# history.append([messages, response]) | |
# We return a list, because this will get added to the existing list | |
return {"messages": [response]} | |
# Define the function to execute tools | |
def call_tool(state): | |
messages = state['messages'] | |
# Based on the continue condition | |
# we know the last message involves a function call | |
last_message = messages[-1] | |
# We construct an ToolInvocation from the function_call | |
action = ToolInvocation( | |
tool=last_message.additional_kwargs["tool_calls"][0]["function"]["name"], | |
tool_input=json.loads(last_message.additional_kwargs["tool_calls"][0]["function"]["arguments"]), | |
) | |
# We call the tool_executor and get back a response | |
response = tool_executor.invoke(action) | |
print(response) | |
# We use the response to create a FunctionMessage | |
function_message = HumanMessage(content=response) | |
# function_message = FunctionMessage(content=str(response), name=action.tool) | |
# We return a list, because this will get added to the existing list | |
return {"messages": [function_message]} | |
from langgraph.graph import StateGraph, END | |
# Define a new graph | |
workflow = StateGraph(AgentState) | |
# Define the two nodes we will cycle between | |
workflow.add_node("agent", call_model) | |
workflow.add_node("action", call_tool) | |
# Set the entrypoint as `agent` | |
# This means that this node is the first one called | |
workflow.set_entry_point("agent") | |
# We now add a conditional edge | |
workflow.add_conditional_edges( | |
# First, we define the start node. We use `agent`. | |
# This means these are the edges taken after the `agent` node is called. | |
"agent", | |
# Next, we pass in the function that will determine which node is called next. | |
should_continue, | |
# Finally we pass in a mapping. | |
# The keys are strings, and the values are other nodes. | |
# END is a special node marking that the graph should finish. | |
# What will happen is we will call `should_continue`, and then the output of that | |
# will be matched against the keys in this mapping. | |
# Based on which one it matches, that node will then be called. | |
{ | |
# If `tools`, then we call the tool node. | |
"continue": "action", | |
# Otherwise we finish. | |
"end": END | |
} | |
) | |
# We now add a normal edge from `tools` to `agent`. | |
# This means that after `tools` is called, `agent` node is called next. | |
workflow.add_edge('action', 'agent') | |
# Finally, we compile it! | |
# This compiles it into a LangChain Runnable, | |
# meaning you can use it as you would any other runnable | |
app = workflow.compile() | |
async def predict(message,history): | |
history_langchain_format = [prompt.format()] | |
for human, ai in history: | |
history_langchain_format.append(HumanMessage(content=(human+"\n"),)) | |
history_langchain_format.append(AIMessage(content=(ai+"\n"),)) | |
history_langchain_format.append(HumanMessage(content=(message+'\n'))) | |
que={"messages": history_langchain_format} | |
# que={"messages": [HumanMessage(content=message)]} | |
# que={"messages":[prompt.format(input=message)]} | |
res=app.invoke(que) | |
if res: | |
mess_list=res["messages"][2:] | |
print(mess_list) | |
res_str="" | |
for i in mess_list: | |
response=i.content | |
print(response) | |
res_str+=(response+'\n') | |
return(res_str) | |
# for j in range(len(response)): | |
# time.sleep(0.3) | |
# yield response[: j+1] | |
else:print("不好意思,出了一个小问题,请联系我的微信:13603634456") | |
demo = gr.ChatInterface(fn=predict, title="西游餐厅",description="西游餐厅开张了,我是经理唐僧,欢迎光临,您有什么需求,可以直接问我哦!",) | |
demo.launch() |