Spaces:
Running
Running
# Required imports | |
import yfinance as yf | |
import pandas as pd | |
from scipy.signal import find_peaks | |
import plotly.graph_objects as go | |
import streamlit as st | |
# Streamlit UI setup | |
sidebar = st.sidebar | |
symbol = sidebar.text_input("Enter stock symbol:", "AAPL") | |
period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"]) | |
# Download stock data | |
data = yf.download(symbol, period=period) | |
# Calculate Moving Averages | |
data['MA50'] = data['Close'].rolling(window=50).mean() | |
data['MA200'] = data['Close'].rolling(window=200).mean() | |
data['MA20'] = data['Close'].rolling(window=20).mean() | |
# Detecting significant peaks and troughs | |
peaks, _ = find_peaks(data['Close'], prominence=1) # Adjust prominence as needed | |
troughs, _ = find_peaks(-data['Close'], prominence=1) # Finding troughs by inverting the data | |
# Ensure there are peaks and troughs detected | |
if len(peaks) == 0 or len(troughs) == 0: | |
st.write("No significant peaks or troughs detected in the selected period.") | |
else: | |
# Using the most significant peak and trough for Fibonacci levels | |
high_price = data.iloc[peaks]['Close'].max() | |
low_price = data.iloc[troughs]['Close'].min() | |
# Calculate Fibonacci Levels | |
fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1] | |
price_diff = high_price - low_price | |
for i, level in enumerate(fib_levels): | |
data[f'Fib_Level_{i}'] = high_price - price_diff * level | |
# Plotting | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green'))) | |
# Add traces for Fibonacci Levels | |
for i in range(7): | |
fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot'))) | |
# Display the chart | |
st.plotly_chart(fig) | |