Spaces:
Running
Running
# Required imports | |
import yfinance as yf | |
import pandas as pd | |
from scipy.signal import find_peaks | |
import plotly.graph_objects as go | |
import streamlit as st | |
# Streamlit UI - Introduction and How to Use the App | |
st.markdown(""" | |
# Stock Analysis Tool | |
Welcome to our stock analysis application, lovingly crafted to provide traders and investors with key insights into market trends, moving averages, and Fibonacci retracement levels. | |
### What It Does | |
This tool allows you to: | |
- View a stock's price movement over time. | |
- Analyze moving averages (20, 50, 200 periods) to identify trends. | |
- Utilize Fibonacci retracement levels to spot potential support and resistance areas. | |
### How to Use | |
1. Enter a stock symbol in the sidebar. | |
2. Choose your desired analysis period. | |
3. Review the plotted stock data and moving averages. | |
4. Use the Fibonacci levels to identify support and resistance areas. | |
**Pro Tip from a Seasoned Trader**: *Buy at support levels, and sell at resistance levels.* This strategy leverages the concept that prices tend to bounce off these key levels, offering opportunities for entry and exit. | |
Let's dive into the analysis! | |
""") | |
# User Inputs | |
sidebar = st.sidebar | |
symbol = sidebar.text_input("Enter stock symbol:", "AAPL") | |
period = sidebar.selectbox("Select period:", ["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"]) | |
# Download stock data | |
data = yf.download(symbol, period=period) | |
# Calculate Moving Averages | |
data['MA50'] = data['Close'].rolling(window=50).mean() | |
data['MA200'] = data['Close'].rolling(window=200).mean() | |
data['MA20'] = data['Close'].rolling(window=20).mean() | |
# Detecting significant peaks and troughs | |
peaks, _ = find_peaks(data['Close'], prominence=1) # Adjust prominence as needed | |
troughs, _ = find_peaks(-data['Close'], prominence=1) # Finding troughs by inverting the data | |
# Plot setup | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='black'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA50'], name='50-Period MA', line=dict(color='blue'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA200'], name='200-Period MA', line=dict(color='red'))) | |
fig.add_trace(go.Scatter(x=data.index, y=data['MA20'], name='20-Period MA', line=dict(color='green'))) | |
# Handling Fibonacci Levels | |
if len(peaks) == 0 or len(troughs) == 0: | |
fig.add_annotation(xref='paper', yref='paper', x=0.5, y=0.5, text="No significant peaks or troughs detected for Fibonacci analysis", showarrow=False, font=dict(size=20, color="red")) | |
else: | |
high_price = data.iloc[peaks]['Close'].max() | |
low_price = data.iloc[troughs]['Close'].min() | |
# Fibonacci Levels | |
fib_levels = [0, 0.236, 0.382, 0.5, 0.618, 0.786, 1] | |
price_diff = high_price - low_price | |
for i, level in enumerate(fib_levels): | |
data[f'Fib_Level_{i}'] = high_price - price_diff * level | |
# Add Fibonacci Levels to the plot | |
for i in range(7): | |
fig.add_trace(go.Scatter(x=data.index, y=[data[f'Fib_Level_{i}'][0]]*len(data), name=f'Fib Level {fib_levels[i]*100}%', line=dict(dash='dot'))) | |
# Display the chart | |
st.plotly_chart(fig) | |