|
import streamlit as st |
|
import yfinance as yf |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
def fetch_data(ticker, start_date, end_date): |
|
data = yf.download(ticker, start=start_date, end=end_date) |
|
return data |
|
|
|
def calculate_indicators(data): |
|
|
|
data['Middle Band'] = data['Close'].rolling(window=20).mean() |
|
data['Upper Band'] = data['Middle Band'] + 1.96 * data['Close'].rolling(window=20).std() |
|
data['Lower Band'] = data['Middle Band'] - 1.96 * data['Close'].rolling(window=20).std() |
|
|
|
|
|
data['MA5'] = data['Close'].rolling(window=5).mean() |
|
data['MA10'] = data['Close'].rolling(window=10).mean() |
|
|
|
return data |
|
|
|
def identify_signals(data): |
|
data['Buy Signal'] = ((data['Close'] < data['Lower Band']) & (data['Close'].shift(1) > data['Lower Band'])) | \ |
|
((data['Close'] > data['MA5']) & (data['Close'].shift(1) < data['MA5'])) |
|
data['Sell Signal'] = ((data['Close'] > data['Upper Band']) & (data['Close'].shift(1) < data['Upper Band'])) | \ |
|
((data['Close'] < data['MA5']) & (data['Close'].shift(1) > data['MA5'])) |
|
return data |
|
|
|
def plot_data(data): |
|
plt.figure(figsize=(10, 5)) |
|
plt.plot(data['Close'], label='Close Price') |
|
plt.plot(data['Upper Band'], label='Upper Bollinger Band', linestyle='--') |
|
plt.plot(data['Middle Band'], label='Middle Bollinger Band', linestyle='--') |
|
plt.plot(data['Lower Band'], label='Lower Bollinger Band', linestyle='--') |
|
plt.plot(data['MA5'], label='5-Day MA', color='green', linestyle='-.') |
|
plt.plot(data['MA10'], label='10-Day MA', color='red', linestyle='-.') |
|
|
|
buy_signals = data[data['Buy Signal']] |
|
sell_signals = data[data['Sell Signal']] |
|
plt.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='green', s=100, label='Buy Signal') |
|
plt.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', s=100, label='Sell Signal') |
|
|
|
plt.title('Stock Price and Trading Signals') |
|
plt.xlabel('Date') |
|
plt.ylabel('Price') |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
def main(): |
|
st.title("OMA Ally BBMA Trading Strategy Visualization") |
|
ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'") |
|
start_date = st.date_input("Select the start date") |
|
end_date = st.date_input("Select the end date") |
|
|
|
if st.button("Analyze"): |
|
data = fetch_data(ticker, start_date, end_date) |
|
data = calculate_indicators(data) |
|
data = identify_signals(data) |
|
plot_data(data) |
|
st.pyplot(plt) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|