Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import yfinance as yf | |
# Function to load historical data | |
def load_data(ticker): | |
return yf.download(ticker, start="2000-01-01", end="2023-01-01") | |
def calculate_performance_metrics(data, initial_capital): | |
cagr = (data['Portfolio Value'].iloc[-1] / initial_capital) ** (1 / ((data.index[-1] - data.index[0]).days / 365.25)) - 1 | |
sharpe_ratio = data['Portfolio Value'].pct_change().mean() / data['Portfolio Value'].pct_change().std() * np.sqrt(252) | |
return cagr, sharpe_ratio | |
def plot_signals(data, ticker, short_window, long_window): | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
ax.plot(data.index, data['Close'], label='Close Price', alpha=0.5) | |
ax.plot(data.index, data['Short_MA'], label=f'Short MA ({short_window})', alpha=0.75) | |
ax.plot(data.index, data['Long_MA'], label=f'Long MA ({long_window})', alpha=0.75) | |
ax.plot(data[data['Position'] == 1].index, data['Short_MA'][data['Position'] == 1], '^', markersize=10, color='g', lw=0, label='Buy Signal') | |
ax.plot(data[data['Position'] == -1].index, data['Short_MA'][data['Position'] == -1], 'v', markersize=10, color='r', lw=0, label='Sell Signal') | |
ax.set_title(f"{ticker} Price and Trading Signals") | |
ax.set_xlabel("Date") | |
ax.set_ylabel("Price") | |
ax.legend() | |
st.pyplot(fig) | |
# User inputs for strategy parameters | |
st.title("Algorithmic Trading Strategy Backtesting") | |
st.markdown("This app allows you to backtest an algorithmic trading strategy using historical stock data.") | |
ticker = st.text_input("Enter the ticker symbol", "AAPL") | |
data = load_data(ticker) | |
# Moving Average Windows | |
short_window = st.number_input("Short moving average window", 1, 50, 20) | |
long_window = st.number_input("Long moving average window", 1, 200, 50) | |
# Initial Capital | |
initial_capital = st.number_input("Initial Capital", 1000, 1000000, 100000) | |
# Data Preprocessing | |
data['Short_MA'] = data['Close'].rolling(window=short_window).mean() | |
data['Long_MA'] = data['Close'].rolling(window=long_window).mean() | |
data.dropna(inplace=True) | |
# Generate Trading Signals | |
data['Signal'] = 0 | |
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0) | |
data['Position'] = data['Signal'].diff() | |
# Backtesting Engine | |
data['Portfolio Value'] = initial_capital | |
data['Portfolio Value'][short_window:] = initial_capital * (1 + data['Signal'][short_window:].shift(1) * data['Close'].pct_change()[short_window:]).cumprod() | |
# Performance metrics | |
cagr, sharpe_ratio = calculate_performance_metrics(data, initial_capital) | |
st.write(f"CAGR: {cagr:.2%}") | |
st.write(f"Sharpe Ratio: {sharpe_ratio:.2f}") | |
# Plot strategy performance | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
ax.plot(data.index, data['Portfolio Value'], label='Portfolio Value') | |
ax.set_title(f"Backtested Performance of {ticker} Strategy") | |
ax.set_xlabel("Date") | |
ax.set_ylabel("Portfolio Value") | |
ax.legend() | |
st.pyplot(fig) | |
# Plot trading signals | |
plot_signals(data, ticker, short_window, long_window) | |
# Advanced Performance Metrics | |
st.subheader("Advanced Performance Metrics") | |
# Maximum Drawdown Calculation | |
rolling_max = data['Portfolio Value'].cummax() | |
daily_drawdown = data['Portfolio Value'] / rolling_max - 1.0 | |
max_drawdown = daily_drawdown.cummin().iloc[-1] | |
st.write(f"Maximum Drawdown: {max_drawdown:.2%}") | |
# Trade Statistics | |
st.subheader("Trade Statistics") | |
num_trades = data['Position'].value_counts().sum() | |
num_winning_trades = data['Position'][data['Position'] == 1].count() | |
num_losing_trades = data['Position'][data['Position'] == -1].count() | |
win_rate = num_winning_trades / num_trades | |
loss_rate = num_losing_trades / num_trades | |
st.write(f"Total Trades: {num_trades}") | |
st.write(f"Winning Trades: {num_winning_trades} ({win_rate:.2%})") | |
st.write(f"Losing Trades: {num_losing_trades} ({loss_rate:.2%})") | |
# Add option to upload data | |
st.subheader("Upload Your Own Data") | |
uploaded_file = st.file_uploader("Choose a file", type="csv") | |
if uploaded_file is not None: | |
user_data = pd.read_csv(uploaded_file) | |
st.write("Uploaded data:") | |
st.write(user_data.head()) | |