nesticot commited on
Commit
67efef9
·
1 Parent(s): 4278228

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -571,19 +571,26 @@ def server(input, output, session):
571
  colour_df[[1],[0]] = 'white'
572
  colour_df[[0],[1]] = 'white'
573
  colour_df[[1],[1]] = 'white'
574
- if df_combined_t.values[[10],[0]] < 0:
575
- if df_combined_t.values[[10],[1]] < 0:
576
- #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
577
- norm = Normalize(vmin=-1.2, vmax=-0.8)
578
- colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
579
 
580
  if df_combined_t.values[[10],[1]] < 0:
581
- if df_combined_t.values[[10],[2]] < 0:
582
- #cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
583
  norm = Normalize(vmin=-1.2, vmax=-0.8)
584
- colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
 
 
 
 
585
 
586
 
 
 
 
 
 
 
 
 
587
 
588
 
589
 
 
571
  colour_df[[1],[0]] = 'white'
572
  colour_df[[0],[1]] = 'white'
573
  colour_df[[1],[1]] = 'white'
 
 
 
 
 
574
 
575
  if df_combined_t.values[[10],[1]] < 0:
576
+ if df_combined_t.values[[10],[0]] < 0:
577
+ cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
578
  norm = Normalize(vmin=-1.2, vmax=-0.8)
579
+ colour_df[[10],[0]] = tuple(cmap_flip(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
580
+ else:
581
+ norm = Normalize(vmin=0.8, vmax=1.2)
582
+ colour_df[[10],[0]] = tuple(colormap(norm(-df_combined_t.values[[10],[0]] / df_combined_t.values[[10],[1]])))
583
+
584
 
585
 
586
+ if df_combined_t.values[[10],[2]] < 0:
587
+ if df_combined_t.values[[10],[1]] < 0:
588
+ cmap_flip = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FBBC04","white","#4285F4"])
589
+ norm = Normalize(vmin=-1.2, vmax=0.8)
590
+ colour_df[[10],[1]] = tuple(cmap_flip(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
591
+ else:
592
+ norm = Normalize(vmin=0.8, vmax=1.2)
593
+ colour_df[[10],[1]] = tuple(colormap(norm(-df_combined_t.values[[10],[1]] / df_combined_t.values[[10],[2]])))
594
 
595
 
596