2024_spray / decision_value.py
nesticot's picture
Upload 13 files
30629a5 verified
raw
history blame contribute delete
No virus
34.1 kB
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
import datasets
from datasets import load_dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.stats import gaussian_kde
import matplotlib
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from scipy.stats import zscore
import math
import matplotlib
from adjustText import adjust_text
import matplotlib.ticker as mtick
from shinywidgets import output_widget, render_widget
import pandas as pd
from configure import base_url
import shinyswatch
### Import Datasets
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv' ])
dataset_train = dataset['train']
df_2023_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
### Import Datasets
dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2023.csv' ])
dataset_train = dataset['train']
df_2023_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
df_2023_mlb['level'] = 'MLB'
df_2023_aaa['level'] = 'AAA'
df_2023 = pd.concat([df_2023_mlb,df_2023_aaa])
#print(df_2023)
### Normalize Hit Locations
import joblib
swing_model = joblib.load('swing.joblib')
no_swing_model = joblib.load('no_swing.joblib')
# Now you can use the loaded model for prediction or any other task
batter_dict = df_2023.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict()
## Make Predictions
## Define Features and Target
features = ['px','pz','strikes','balls']
## Set up 2023 Data for Prediction of Run Expectancy
df_model_2023_no_swing = df_2023[df_2023.is_swing != 1].dropna(subset=features)
df_model_2023_swing = df_2023[df_2023.is_swing == 1].dropna(subset=features)
import xgboost as xgb
df_model_2023_no_swing['y_pred'] = no_swing_model.predict(xgb.DMatrix(df_model_2023_no_swing[features]))
df_model_2023_swing['y_pred'] = swing_model.predict(xgb.DMatrix(df_model_2023_swing[features]))
df_model_2023 = pd.concat([df_model_2023_no_swing,df_model_2023_swing])
import joblib
# # Dump the model to a file named 'model.joblib'
# model = joblib.load('xtb_model.joblib')
# ## Create a Dataset to calculate xRV/100 Pitches
# df_model_2023['pitcher_name'] = df_model_2023.pitcher.map(pitcher_dict)
# df_model_2023['player_team'] = df_model_2023.batter.map(team_player_dict)
df_model_2023_group = df_model_2023.groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean'),
)
## Minimum 500 pitches faced
#min_pitches = 300
#df_model_2023_group = df_model_2023_group[df_model_2023_group.pitches >= min_pitches]
## Calculate 20-80 Scale
df_model_2023_group['decision_value'] = zscore(df_model_2023_group['y_pred'])
df_model_2023_group['decision_value'] = (50+df_model_2023_group['decision_value']*10)
## Create a Dataset to calculate xRV/100 for Pitches Taken
df_model_2023_group_no_swing = df_model_2023[df_model_2023.is_swing!=1].groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean')
)
# Select Pitches with 500 total pitches
df_model_2023_group_no_swing = df_model_2023_group_no_swing[df_model_2023_group_no_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
## Calculate 20-80 Scale
df_model_2023_group_no_swing['iz_awareness'] = zscore(df_model_2023_group_no_swing['y_pred'])
df_model_2023_group_no_swing['iz_awareness'] = (((50+df_model_2023_group_no_swing['iz_awareness']*10)))
## Create a Dataset for xRV/100 Pitches Swung At
df_model_2023_group_swing = df_model_2023[df_model_2023.is_swing==1].groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean')
)
# Select Pitches with 500 total pitches
df_model_2023_group_swing = df_model_2023_group_swing[df_model_2023_group_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
## Calculate 20-80 Scale
df_model_2023_group_swing['oz_awareness'] = zscore(df_model_2023_group_swing['y_pred'])
df_model_2023_group_swing['oz_awareness'] = (((50+df_model_2023_group_swing['oz_awareness']*10)))
## Create df for plotting
# Merge Datasets
df_model_2023_group_swing_plus_no = df_model_2023_group_swing.merge(df_model_2023_group_no_swing,left_index=True,right_index=True,suffixes=['_swing','_no_swing'])
df_model_2023_group_swing_plus_no['pitches'] = df_model_2023_group_swing_plus_no.pitches_swing + df_model_2023_group_swing_plus_no.pitches_no_swing
# Calculate xRV/100 Pitches
df_model_2023_group_swing_plus_no['y_pred'] = (df_model_2023_group_swing_plus_no.y_pred_swing*df_model_2023_group_swing_plus_no.pitches_swing + \
df_model_2023_group_swing_plus_no.y_pred_no_swing*df_model_2023_group_swing_plus_no.pitches_no_swing) / \
df_model_2023_group_swing_plus_no.pitches
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.merge(right=df_model_2023_group,
left_index=True,
right_index=True,
suffixes=['','_y'])
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.reset_index()
team_dict = df_2023.groupby(['batter_name'])[['batter_id','batter_team']].tail().set_index('batter_id')['batter_team'].to_dict()
df_model_2023_group_swing_plus_no['team'] = df_model_2023_group_swing_plus_no['batter_id'].map(team_dict)
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.set_index(['batter_id','batter_name','level','team'])
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no['pitches']>=250]
df_model_2023_group_swing_plus_no_copy = df_model_2023_group_swing_plus_no.copy()
import matplotlib
colour_palette = ['#FFB000','#648FFF','#785EF0',
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]])
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]])
from matplotlib.pyplot import text
import inflect
from scipy.stats import percentileofscore
p = inflect.engine()
def server(input,output,session):
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def scatter_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
print(df_model_2023_group_swing_plus_no_copy)
print(input.level_list())
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no_copy[df_model_2023_group_swing_plus_no_copy.index.get_level_values(2) == input.level_list()]
print('this one')
print(df_model_2023_group_swing_plus_no)
batter_select_id = int(input.batter_id())
# batter_select_name = 'Edouard Julien'
#max(1,int(input.pitch_min()))
plot_min = max(250,int(input.pitch_min()))
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no.pitches >= plot_min]
## Plot In-Zone vs Out-of-Zone Awareness
sns.set_theme(style="whitegrid", palette="pastel")
# fig, ax = plt.subplots(1,1,figsize=(12,12))
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.6,10,0.2], width_ratios=[0.25,0.50,0.25])
axheader = fig.add_subplot(gs[0, :])
#ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, :]) # Subplot at the top-right position
#ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, 0])
axfooter2 = fig.add_subplot(gs[-1, 1])
axfooter3 = fig.add_subplot(gs[-1, 2])
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],colour_palette[3],colour_palette[0]])
norm = plt.Normalize(df_model_2023_group_swing_plus_no['y_pred'].min()*100, df_model_2023_group_swing_plus_no['y_pred'].max()*100)
sns.scatterplot(
x=df_model_2023_group_swing_plus_no['y_pred_swing']*100,
y=df_model_2023_group_swing_plus_no['y_pred_no_swing']*100,
hue=df_model_2023_group_swing_plus_no['y_pred']*100,
size=df_model_2023_group_swing_plus_no['pitches_swing']/df_model_2023_group_swing_plus_no['pitches'],
palette=cmap_hue,ax=ax)
sm = plt.cm.ScalarMappable(cmap=cmap_hue, norm=norm)
cbar = plt.colorbar(sm, cax=axfooter2, orientation='horizontal',shrink=1)
cbar.set_label('Decision Value xRV/100 Pitches',fontsize=12)
ax.hlines(xmin=(math.floor((df_model_2023_group_swing_plus_no['y_pred_swing'].min()*100*100-0.01)/5))*5/100,
xmax= (math.ceil((df_model_2023_group_swing_plus_no['y_pred_swing'].max()**100100+0.01)/5))*5/100,
y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
ax.vlines(ymin=(math.floor((df_model_2023_group_swing_plus_no['y_pred_no_swing'].min()*100*100-0.01)/5))*5/100,
ymax= (math.ceil((df_model_2023_group_swing_plus_no['y_pred_no_swing'].max()*100*100+0.01)/5))*5/100,
x=df_model_2023_group_swing_plus_no['y_pred_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
x_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_swing'].min()*100*100)/5))*5/100
x_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_swing'].max()*100*100)/5))*5/100
y_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_no_swing'].min()*100*100)/5))*5/100
y_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_no_swing'].max()*100*100)/5))*5/100
ax.set_xlim(x_lim_min,x_lim_max)
ax.set_ylim(y_lim_min,y_lim_max)
ax.tick_params(axis='both', which='major', labelsize=12)
ax.set_xlabel('Out-of-Zone Awareness Value xRV/100 Swings',fontsize=16)
ax.set_ylabel('In-Zone Awareness Value xRV/100 Takes',fontsize=16)
ax.get_legend().remove()
ts=[]
# thresh = 0.5
# thresh_2 = -0.9
# for i in range(len(df_model_2023_group_swing_plus_no)):
# if (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) >= thresh or \
# (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) <= thresh_2 or \
# (str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
# ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
# y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
# s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
# fontsize=8))
thresh = 0.5
thresh_2 = -0.9
for i in range(len(df_model_2023_group_swing_plus_no)):
if (df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.02) or \
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.02) or \
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.02) or \
(str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
fontsize=8))
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.02,s=f'Min. {plot_min} Pitches',fontsize='10',fontstyle='oblique',va='top',
bbox=dict(facecolor='white', edgecolor='black'))
# ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Labels for Batters with\nDescion Value xRV/100 > {thresh:.2f}\nDescion Value xRV/100 < {thresh_2:.2f}',fontsize='10',fontstyle='oblique',va='top',
# bbox=dict(facecolor='white', edgecolor='black'))
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Point Size Represents Swing%',fontsize='10',fontstyle='oblique',va='top',
bbox=dict(facecolor='white', edgecolor='black'))
adjust_text(ts,
arrowprops=dict(arrowstyle="-", color=colour_palette[4], lw=1),ax=ax)
axfooter1.axis('off')
axfooter3.axis('off')
axheader.axis('off')
axheader.text(s=f'{input.level_list()} In-Zone vs Out-of-Zone Awareness Value',fontsize=24,x=0.5,y=0,va='top',ha='center')
axfooter1.text(0.05, -0.5,"By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
axfooter3.text(0.95, -0.5, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025)
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def dv_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
# df_will['y_pred'] = df_will['y_pred'] - df_will['y_pred'].mean()
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred.mean()*100:.2f} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
#ax.set_ylim(-1.5,1.5)
ax.set_yticks([-1.5,-1,-0.5,0,0.5,1,1.5])
ax.set_xlabel('Pitch')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling Swing Decision Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
#fig.set_facecolor(colour_palette[5])
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def iz_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
df_will = df_will[df_will['is_swing'] != 1]
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_no_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100:.2} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
ax.set_yticks([1.0,1.5,2.0,2.5,3.0])
# ax.set_ylim(1,3)
ax.set_xlabel('Takes')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling In-Zone Awareness Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def oz_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
df_will = df_will[df_will['is_swing'] == 1]
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred_swing.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100:.2} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
#ax.set_ylim(-3.25,-1.25)
ax.set_yticks([-3.25,-2.75,-2.25,-1.75,-1.25])
ax.set_xlabel('Swing')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {input.level_list()} - {win} Pitch Rolling Out of Zone Awareness Expected Run Value Added',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
decision_value = App(ui.page_fluid(
ui.tags.base(href=base_url),
ui.tags.div(
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
ui.tags.style(
"""
h4 {
margin-top: 1em;font-size:35px;
}
h2{
font-size:25px;
}
"""
),
shinyswatch.theme.simplex(),
ui.tags.h4("TJStats"),
ui.tags.i("Baseball Analytics and Visualizations"),
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
ui.navset_tab(
ui.nav_control(
ui.a(
"Home",
href="home/"
),
),
ui.nav_menu(
"Batter Charts",
ui.nav_control(
ui.a(
"Batting Rolling",
href="rolling_batter/"
),
ui.a(
"Spray & Damage",
href="spray/"
),
ui.a(
"Decision Value",
href="decision_value/"
),
# ui.a(
# "Damage Model",
# href="damage_model/"
# ),
ui.a(
"Batter Scatter",
href="batter_scatter/"
),
# ui.a(
# "EV vs LA Plot",
# href="ev_angle/"
# ),
ui.a(
"Statcast Compare",
href="statcast_compare/"
)
),
),
ui.nav_menu(
"Pitcher Charts",
ui.nav_control(
ui.a(
"Pitcher Rolling",
href="rolling_pitcher/"
),
ui.a(
"Pitcher Summary",
href="pitching_summary_graphic_new/"
),
ui.a(
"Pitcher Scatter",
href="pitcher_scatter/"
)
),
)),ui.row(
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_numeric("pitch_min",
"Select Pitch Minimum [min. 250] (Scatter)",
value=500,
min=250),
ui.input_select("name_list",
"Select Players to List (Scatter)",
batter_dict,
selectize=True,
multiple=True),
ui.input_select("batter_id",
"Select Batter (Rolling)",
batter_dict,
width=1,
size=1,
selectize=True),
ui.input_numeric("rolling_window",
"Select Rolling Window (Rolling)",
value=100,
min=1),
ui.input_select("level_list",
"Select Level",
['MLB','AAA'],
selected='MLB'),
ui.input_action_button("go", "Generate",class_="btn-primary"),
),
ui.panel_main(
ui.navset_tab(
ui.nav("Scatter Plot",
ui.output_plot('scatter_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling DV",
ui.output_plot('dv_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling In-Zone",
ui.output_plot('iz_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling Out-of-Zone",
ui.output_plot('oz_plot',
width='1000px',
height='1000px'))
))
)),)),server)