Spaces:
Running
Running
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui | |
import datasets | |
from datasets import load_dataset | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from scipy.stats import gaussian_kde | |
import matplotlib | |
from matplotlib.ticker import MaxNLocator | |
from matplotlib.gridspec import GridSpec | |
from scipy.stats import zscore | |
import math | |
import matplotlib | |
from adjustText import adjust_text | |
import matplotlib.ticker as mtick | |
from shinywidgets import output_widget, render_widget | |
import pandas as pd | |
from configure import base_url | |
import shinyswatch | |
### Import Datasets | |
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv' ]) | |
dataset_train = dataset['train'] | |
df_2023 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
print(df_2023) | |
### Normalize Hit Locations | |
df_2023['season'] = df_2023['game_date'].str[0:4].astype(int) | |
# df_2023['hit_x'] = df_2023['hit_x'] - df_2023['hit_x'].median() | |
# df_2023['hit_y'] = -df_2023['hit_y']+df_2023['hit_y'].quantile(0.9999) | |
df_2023['hit_x'] = df_2023['hit_x'] - 126#df_2023['hit_x'].median() | |
df_2023['hit_y'] = -df_2023['hit_y']+204.5#df_2023['hit_y'].quantile(0.9999) | |
df_2023['hit_x_og'] = df_2023['hit_x'] | |
df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] = -1*df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] | |
df_2023['h_la'] = np.arctan(df_2023['hit_x'] / df_2023['hit_y'])*180/np.pi | |
conditions_ss = [ | |
(df_2023['h_la']<-15), | |
(df_2023['h_la']<15)&(df_2023['h_la']>=-15), | |
(df_2023['h_la']>=15) | |
] | |
choices_ss = ['Oppo','Straight','Pull'] | |
df_2023['traj'] = np.select(conditions_ss, choices_ss, default=np.nan) | |
df_2023['bip'] = [1 if x > 0 else np.nan for x in df_2023['launch_speed']] | |
conditions_woba = [ | |
(df_2023['event_type']=='walk'), | |
(df_2023['event_type']=='hit_by_pitch'), | |
(df_2023['event_type']=='single'), | |
(df_2023['event_type']=='double'), | |
(df_2023['event_type']=='triple'), | |
(df_2023['event_type']=='home_run'), | |
] | |
choices_woba = [1, | |
1, | |
1, | |
2, | |
3, | |
4] | |
# choices_woba = [0.698, | |
# 0.728, | |
# 0.887, | |
# 1.253, | |
# 1.583, | |
# 2.027] | |
df_2023['woba'] = np.select(conditions_woba, choices_woba, default=0) | |
choices_woba_train = [1, | |
1, | |
1, | |
2, | |
3, | |
4] | |
df_2023['woba_train'] = np.select(conditions_woba, choices_woba_train, default=0) | |
df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['h_la','launch_angle']) | |
df_2023_bip['h_la'] = df_2023_bip['h_la'].round(0) | |
df_2023_bip['season'] = df_2023_bip['game_date'].str[0:4].astype(int) | |
df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['launch_angle','bip']) | |
df_2023_bip_train = df_2023_bip[df_2023_bip['season'] == 2023] | |
batter_dict = df_2023_bip.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict() | |
features = ['launch_angle','launch_speed','h_la'] | |
target = ['woba_train'] | |
df_2023_bip_train = df_2023_bip_train.dropna(subset=features) | |
import joblib | |
# # Dump the model to a file named 'model.joblib' | |
model = joblib.load('xtb_model.joblib') | |
df_2023_bip_train['y_pred'] = [sum(x) for x in model.predict_proba(df_2023_bip_train[features]) * ([0,1,2,3,4])] | |
# df_2023_bip_train['y_pred_noh'] = [sum(x) for x in model_noh.predict_proba(df_2023_bip_train[['launch_angle','launch_speed']]) * ([0,0.887,1.253,1.583,2.027])] | |
df_2023_output = df_2023_bip_train.groupby(['batter_id','batter_name']).agg( | |
bip = ('y_pred','count'), | |
y_pred = ('y_pred','sum'), | |
slgcon = ('woba','mean'), | |
xslgcon = ('y_pred','mean'), | |
launch_speed = ('launch_speed','mean'), | |
launch_angle_std = ('launch_angle','median'), | |
h_la_std = ('h_la','mean')) | |
df_2023_output_copy = df_2023_output.copy() | |
# df_2023_output = df_2023_output[df_2023_output['bip'] > 100] | |
# df_2023_output[df_2023_output['bip'] > 100].sort_values(by='h_la_std',ascending=True).head(20) | |
import pandas as pd | |
import numpy as np | |
# Create grid coordinates | |
x = np.arange(30, 121,1 ) | |
y = np.arange(-30, 61,1 ) | |
z = np.arange(-45, 46,1 ) | |
# Create a meshgrid | |
X, Y, Z = np.meshgrid(x, y, z, indexing='ij') | |
# Flatten the meshgrid to get x and y coordinates | |
x_flat = X.flatten() | |
y_flat = Y.flatten() | |
z_flat = Z.flatten() | |
# Create a DataFrame | |
df = pd.DataFrame({'launch_speed': x_flat, 'launch_angle': y_flat,'h_la':z_flat}) | |
df['y_pred'] = [sum(x) for x in model.predict_proba(df[features]) * ([0,1,2,3,4])] | |
import matplotlib | |
colour_palette = ['#FFB000','#648FFF','#785EF0', | |
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] | |
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]]) | |
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]]) | |
from matplotlib.pyplot import text | |
import inflect | |
from scipy.stats import percentileofscore | |
p = inflect.engine() | |
def server(input,output,session): | |
def hex_plot(): | |
if input.batter_id() is "": | |
fig = plt.figure(figsize=(12, 12)) | |
fig.text(s='Please Select a Batter',x=0.5,y=0.5) | |
return | |
batter_select_id = int(input.batter_id()) | |
# batter_select_name = 'Edouard Julien' | |
quant = int(input.quant())/100 | |
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] | |
# df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_name']==batter_select_name] | |
df_batter = df_batter_og[df_batter_og['launch_speed'] >= df_batter_og['launch_speed'].quantile(quant)] | |
# df_batter_best_speed = df_batter['launch_speed'].mean().round() | |
# df_bip_league = df_2023_bip_train[df_2023_bip_train['launch_speed'] >= df_2023_bip_train['launch_speed'].quantile(quant)] | |
import pandas as pd | |
import numpy as np | |
# Create grid coordinates | |
#x = np.arange(30, 121,1 ) | |
y_b = np.arange(df_batter['launch_angle'].median()-df_batter['launch_angle'].std(), | |
df_batter['launch_angle'].median()+df_batter['launch_angle'].std(),1 ) | |
z_b = np.arange(df_batter['h_la'].median()-df_batter['h_la'].std(), | |
df_batter['h_la'].median()+df_batter['h_la'].std(),1 ) | |
# Create a meshgrid | |
Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij') | |
# Flatten the meshgrid to get x and y coordinates | |
y_flat_b = Y_b.flatten() | |
z_flat_b = Z_b.flatten() | |
# Create a DataFrame | |
df_batter_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)}) | |
# df_batter_base['y_pred'] = [sum(x) for x in model.predict_proba(df_batter_base[features]) * ([0,1,2,3,4])] | |
from matplotlib.gridspec import GridSpec | |
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150) | |
fig = plt.figure(figsize=(12,12)) | |
gs = GridSpec(4, 3, height_ratios=[0.5,10,1.5,0.2], width_ratios=[0.05,0.9,0.05]) | |
axheader = fig.add_subplot(gs[0, :]) | |
ax10 = fig.add_subplot(gs[1, 0]) | |
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position | |
ax12 = fig.add_subplot(gs[1, 2]) | |
ax2_ = fig.add_subplot(gs[2, :]) | |
axfooter1 = fig.add_subplot(gs[-1, :]) | |
axheader.axis('off') | |
ax10.axis('off') | |
ax12.axis('off') | |
ax2_.axis('off') | |
axfooter1.axis('off') | |
extents = [-45,45,-30,60] | |
def hexLines(a=None,i=None,off=[0,0]): | |
'''regular hexagon segment lines as `(xy1,xy2)` in clockwise | |
order with points in line sorted top to bottom | |
for irregular hexagon pass both `a` (vertical) and `i` (horizontal)''' | |
if a is None: a = 2 / np.sqrt(3) * i; | |
if i is None: i = np.sqrt(3) / 2 * a; | |
h = a / 2 | |
xy = np.array([ [ [ 0, a], [ i, h] ], | |
[ [ i, h], [ i,-h] ], | |
[ [ i,-h], [ 0,-a] ], | |
[ [-i,-h], [ 0,-a] ], #flipped | |
[ [-i, h], [-i,-h] ], #flipped | |
[ [ 0, a], [-i, h] ] #flipped | |
]) | |
return xy+off; | |
h = ax.hexbin(x=df_batter_base['h_la'], | |
y=df_batter_base['launch_angle'], | |
gridsize=25, | |
edgecolors='k', | |
extent=extents,mincnt=1,lw=2,zorder=-3,) | |
# cfg = {**cfg,'vmin':h.get_clim()[0], 'vmax':h.get_clim()[1]} | |
# plt.hexbin( ec="black" ,lw=6,zorder=4,mincnt=2,**cfg,alpha=0.1) | |
# plt.hexbin( ec="#ffffff",lw=1,zorder=5,mincnt=2,**cfg,alpha=0.1) | |
ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], | |
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], | |
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], | |
gridsize=25, | |
vmin=0, | |
vmax=4, | |
cmap=cmap_hue2, | |
extent=extents,zorder=-3) | |
# Get the counts and centers of the hexagons | |
counts = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], | |
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], | |
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], | |
gridsize=25, | |
vmin=0, | |
vmax=4, | |
cmap=cmap_hue2, | |
extent=extents).get_array() | |
bin_centers = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], | |
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], | |
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], | |
gridsize=25, | |
vmin=0, | |
vmax=4, | |
cmap=cmap_hue2, | |
extent=extents).get_offsets() | |
# Add text with the values of "C" to each hexagon | |
for count, (x, y) in zip(counts, bin_centers): | |
if count >= 1: | |
ax.text(x, y, f'{count:.1f}', color='black', ha='center', va='center',fontsize=7) | |
#get hexagon centers that should be highlighted | |
verts = h.get_offsets() | |
cnts = h.get_array() | |
highl = verts[cnts > .5*cnts.max()] | |
#create hexagon lines | |
a = ((verts[0,1]-verts[1,1])/3).round(6) | |
i = ((verts[1:,0]-verts[:-1,0])/2).round(6) | |
i = i[i>0][0] | |
lines = np.concatenate([hexLines(a,i,off) for off in highl]) | |
#select contour lines and draw | |
uls,c = np.unique(lines.round(4),axis=0,return_counts=True) | |
for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[1],zorder=100) | |
# Plot filled hexagons | |
for hc in highl: | |
hx = hc[0] + np.array([0, i, i, 0, -i, -i]) | |
hy = hc[1] + np.array([a, a/2, -a/2, -a, -a/2, a/2]) | |
ax.fill(hx, hy, color=colour_palette[1], alpha=0.15, edgecolor=None) # Adjust color and alpha as needed | |
# # Create grid coordinates | |
# #x = np.arange(30, 121,1 ) | |
# y_b = np.arange(df_bip_league['launch_angle'].median()-df_bip_league['launch_angle'].std(), | |
# df_bip_league['launch_angle'].median()+df_bip_league['launch_angle'].std(),1 ) | |
# z_b = np.arange(df_bip_league['h_la'].median()-df_bip_league['h_la'].std(), | |
# df_bip_league['h_la'].median()+df_bip_league['h_la'].std(),1 ) | |
# # Create a meshgrid | |
# Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij') | |
# # Flatten the meshgrid to get x and y coordinates | |
# y_flat_b = Y_b.flatten() | |
# z_flat_b = Z_b.flatten() | |
# # Create a DataFrame | |
# df_league_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)}) | |
# h_league = ax.hexbin(x=df_league_base['h_la'], | |
# y=df_league_base['launch_angle'], | |
# gridsize=25, | |
# edgecolors=colour_palette[1], | |
# extent=extents,mincnt=1,lw=2,zorder=-3,) | |
# #get hexagon centers that should be highlighted | |
# verts = h_league.get_offsets() | |
# cnts = h_league.get_array() | |
# highl = verts[cnts > .5*cnts.max()] | |
# #create hexagon lines | |
# a = ((verts[0,1]-verts[1,1])/3).round(6) | |
# i = ((verts[1:,0]-verts[:-1,0])/2).round(6) | |
# i = i[i>0][0] | |
# lines = np.concatenate([hexLines(a,i,off) for off in highl]) | |
# #select contour lines and draw | |
# uls,c = np.unique(lines.round(4),axis=0,return_counts=True) | |
# for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[3],zorder=99) | |
axheader.text(s=f"{df_batter['batter_name'].values[0]} - {int(quant*100)}th% EV and Greater Batted Ball Tendencies",x=0.5,y=0.2,fontsize=20,ha='center',va='bottom') | |
axheader.text(s=f"2023 Season",x=0.5,y=-0.1,fontsize=14,ha='center',va='top') | |
ax.set_xlabel(f"Horizontal Spray Angle (°)",fontsize=12) | |
ax.set_ylabel(f"Vertical Launch Angle (°)",fontsize=12) | |
ax2_.text(x=0.5, | |
y=0.0, | |
s="Notes:\n" \ | |
f"- {int(quant*100)}th% EV and Greater BBE is defined as a batter's top {100 - int(quant*100)}% hardest hit BBE\n" \ | |
f"- Colour Scale and Number Labels Represents the Expected Total Bases for a batter's range of Best Speeds\n" \ | |
f"- Shaded Area Represents the 2-D Region bounded by ±1σ Launch Angle and Horizontal Spray Angle on batter's Best Speed BBE\n"\ | |
f"- {df_batter['batter_name'].values[0]} {int(quant*100)}th% EV and Greater BBE Range from {df_batter['launch_speed'].min():.0f} to {df_batter['launch_speed'].max():.0f} mph ({len(df_batter)} BBE)\n"\ | |
f"- Positive Horizontal Spray Angle Represents a BBE hit in same direction as batter handedness (i.e. Pulled)" , | |
fontsize=11, | |
fontstyle='oblique', | |
va='bottom', | |
ha='center', | |
bbox=dict(facecolor='white', edgecolor='black'),ma='left') | |
axfooter1.text(0.05, 0.5, "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12) | |
axfooter1.text(0.95, 0.5, "Data: MLB",ha='right', va='bottom',fontsize=12) | |
if df_batter['batter_hand'].values[0] == 'R': | |
ax.invert_xaxis() | |
ax.grid(False) | |
ax.axis('equal') | |
# Adjusting subplot to center it within the figure | |
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025) | |
#ax.text(f"Vertical Spray Angle (°)") | |
def roll_plot(): | |
# player_select = 'Nolan Gorman' | |
# player_select_full =player_select | |
if input.batter_id() is "": | |
fig = plt.figure(figsize=(12, 12)) | |
fig.text(s='Please Select a Batter',x=0.5,y=0.5) | |
return | |
# df_will = df_model_2023[df_model_2023.batter_name == player_select].sort_values(by=['game_date','start_time']) | |
# df_will = df_will[df_will['is_swing'] != 1] | |
batter_select_id = int(input.batter_id()) | |
# batter_select_name = 'Edouard Julien' | |
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] | |
batter_select_name = df_batter_og['batter_name'].values[0] | |
win = min(int(input.rolling_window()),len(df_batter_og)) | |
df_2023_output = df_2023_output_copy[df_2023_output_copy['bip'] >= win] | |
sns.set_theme(style="whitegrid", palette="pastel") | |
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300) | |
from matplotlib.gridspec import GridSpec | |
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150) | |
fig = plt.figure(figsize=(12,12)) | |
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01]) | |
axheader = fig.add_subplot(gs[0, :]) | |
ax10 = fig.add_subplot(gs[1, 0]) | |
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position | |
ax12 = fig.add_subplot(gs[1, 2]) | |
axfooter1 = fig.add_subplot(gs[-1, :]) | |
axheader.axis('off') | |
ax10.axis('off') | |
ax12.axis('off') | |
axfooter1.axis('off') | |
sns.lineplot( x= range(win,len(df_batter_og.y_pred.rolling(window=win).mean())+1), | |
y= df_batter_og.y_pred.rolling(window=win).mean().dropna(), | |
color=colour_palette[0],linewidth=2,ax=ax) | |
ax.hlines(y=df_batter_og.y_pred.mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[0],linestyle='--', | |
label=f'{batter_select_name} Average: {df_batter_og.y_pred.mean():.3f} xSLGCON ({p.ordinal(int(np.around(percentileofscore(df_2023_output["xslgcon"],df_batter_og.y_pred.mean(), kind="strict"))))} Percentile)') | |
# ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will)) | |
# sns.scatterplot( x= [976], | |
# y= df_will.y_pred.rolling(window=win).mean().min()*100, | |
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7]) | |
ax.hlines(y=df_2023_bip_train['y_pred'].mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[1],linestyle='-.',alpha=1, | |
label = f'MLB Average: {df_2023_bip_train["y_pred"].mean():.3f} xSLGCON') | |
ax.legend() | |
hard_hit_dates = [df_2023_output['xslgcon'].quantile(0.9), | |
df_2023_output['xslgcon'].quantile(0.75), | |
df_2023_output['xslgcon'].quantile(0.25), | |
df_2023_output['xslgcon'].quantile(0.1)] | |
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.9),xmin=win,xmax=len(df_batter_og),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1) | |
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.75),xmin=win,xmax=len(df_batter_og),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1) | |
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.25),xmin=win,xmax=len(df_batter_og),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1) | |
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.1),xmin=win,xmax=len(df_batter_og),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1) | |
hard_hit_text = ['90th %','75th %','25th %','10th %'] | |
for i, x in enumerate(hard_hit_dates): | |
ax.text(min(win+win/50,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left', | |
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11) | |
# # Annotate with an arrow | |
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03), | |
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2), | |
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10, | |
# bbox=dict(facecolor='white', edgecolor='black'),va='top') | |
ax.set_xlim(win,len(df_batter_og)) | |
# ax.set_ylim(0.2,max(1,)) | |
ax.set_yticks([0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]) | |
ax.set_xlabel('Balls In Play') | |
ax.set_ylabel('Expected Total Bases per Ball In Play (xSLGCON)') | |
from matplotlib.ticker import FormatStrFormatter | |
ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) | |
axheader.text(s=f'{batter_select_name} - MLB - {win} Rolling BIP Expected Slugging on Contact (xSLGCON)',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14) | |
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12) | |
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12) | |
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02) | |
damage = App(ui.page_fluid( | |
ui.tags.base(href=base_url), | |
ui.tags.div( | |
{"style": "width:95%;margin: 0 auto;max-width: 1600px;"}, | |
ui.tags.style( | |
""" | |
h4 { | |
margin-top: 1em;font-size:35px; | |
} | |
h2{ | |
font-size:25px; | |
} | |
""" | |
), | |
shinyswatch.theme.simplex(), | |
ui.tags.h4("TJStats"), | |
ui.tags.i("Baseball Analytics and Visualizations"), | |
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""), | |
ui.navset_tab( | |
ui.nav_control( | |
ui.a( | |
"Home", | |
href="home/" | |
), | |
), | |
ui.nav_menu( | |
"Batter Charts", | |
ui.nav_control( | |
ui.a( | |
"Batting Rolling", | |
href="rolling_batter/" | |
), | |
ui.a( | |
"Spray", | |
href="spray/" | |
), | |
ui.a( | |
"Decision Value", | |
href="decision_value/" | |
), | |
ui.a( | |
"Damage Model", | |
href="damage_model/" | |
), | |
ui.a( | |
"Batter Scatter", | |
href="batter_scatter/" | |
), | |
# ui.a( | |
# "EV vs LA Plot", | |
# href="ev_angle/" | |
# ), | |
ui.a( | |
"Statcast Compare", | |
href="statcast_compare/" | |
) | |
), | |
), | |
ui.nav_menu( | |
"Pitcher Charts", | |
ui.nav_control( | |
ui.a( | |
"Pitcher Rolling", | |
href="rolling_pitcher/" | |
), | |
ui.a( | |
"Pitcher Summary", | |
href="pitching_summary_graphic_new/" | |
), | |
ui.a( | |
"Pitcher Scatter", | |
href="pitcher_scatter/" | |
) | |
), | |
)),ui.row( | |
ui.layout_sidebar( | |
ui.panel_sidebar( | |
ui.input_select("batter_id", | |
"Select Batter", | |
batter_dict, | |
width=1, | |
size=1, | |
selectize=True), | |
ui.input_numeric("quant", | |
"Select Percentile", | |
value=50, | |
min=0,max=100), | |
ui.input_numeric("rolling_window", | |
"Select Rolling Window", | |
value=50, | |
min=1), | |
ui.input_action_button("go", "Generate",class_="btn-primary")), | |
ui.panel_main( | |
ui.navset_tab( | |
ui.nav("Damage Hex", | |
ui.output_plot('hex_plot', | |
width='1200px', | |
height='1200px')), | |
ui.nav("Damage Roll", | |
ui.output_plot('roll_plot', | |
width='1200px', | |
height='1200px')) | |
)) | |
)),)),server) |