Spaces:
Running
Running
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui | |
import datasets | |
from datasets import load_dataset | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from scipy.stats import gaussian_kde | |
import matplotlib | |
from matplotlib.ticker import MaxNLocator | |
from matplotlib.gridspec import GridSpec | |
from scipy.stats import zscore | |
import math | |
import matplotlib | |
from adjustText import adjust_text | |
import matplotlib.ticker as mtick | |
from shinywidgets import output_widget, render_widget | |
import pandas as pd | |
from configure import base_url | |
import shinyswatch | |
import inflect | |
from matplotlib.pyplot import text | |
def percentile(n): | |
def percentile_(x): | |
return np.nanpercentile(x, n) | |
percentile_.__name__ = 'percentile_%s' % n | |
return percentile_ | |
colour_palette = ['#FFB000','#648FFF','#785EF0', | |
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] | |
print('Starting Everything:') | |
# exit_velo_df = milb_a_ev_df.append([triple_a_ev_df,double_a_ev_df,a_high_a_ev_df,single_a_ev_df]).reset_index(drop=True) | |
# player_df_all = mlb_a_player_df.append([triple_a_player_df,double_a_player_df,a_high_a_player_df,single_a_player_df]).reset_index(drop=True) | |
# exit_velo_df = pd.read_csv('exit_velo_df_all.csv',index_col=[0]) | |
# player_df_all = pd.read_csv('player_df_all.csv',index_col=[0]) | |
# pa_df = pd.read_csv('pa_df_all.csv',index_col=[0]) | |
# pa_df_full_na = pa_df.dropna() | |
### Import Datasets | |
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv', | |
]) | |
dataset_train = dataset['train'] | |
exit_velo_df_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
#print(df_2023) | |
exit_velo_df_mlb['level'] = 'MLB' | |
# ### Import Datasets | |
# dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2023.csv', | |
# ]) | |
# dataset_train = dataset['train'] | |
# exit_velo_df_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
# #print(df_2023) | |
# exit_velo_df_aaa['level'] = 'AAA' | |
# ### Import Datasets | |
# dataset = load_dataset('nesticot/mlb_data', data_files=['aa_pitch_data_2023.csv', | |
# ]) | |
# dataset_train = dataset['train'] | |
# exit_velo_df_aa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
# #print(df_2023) | |
# exit_velo_df_aa['level'] = 'AA' | |
# ### Import Datasets | |
# dataset = load_dataset('nesticot/mlb_data', data_files=['high_a_pitch_data_2023.csv', | |
# ]) | |
# dataset_train = dataset['train'] | |
# exit_velo_df_ha = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
# #print(df_2023) | |
# exit_velo_df_ha['level'] = 'A+' | |
# ### Import Datasets | |
# dataset = load_dataset('nesticot/mlb_data', data_files=['a_pitch_data_2023.csv', | |
# ]) | |
# dataset_train = dataset['train'] | |
# exit_velo_df_a = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) | |
# #print(df_2023) | |
# exit_velo_df_a['level'] = 'A' | |
# exit_velo_df = pd.concat([exit_velo_df_mlb,exit_velo_df_aaa,exit_velo_df_aa,exit_velo_df_ha,exit_velo_df_a]) | |
exit_velo_df = pd.concat([exit_velo_df_mlb]) | |
# exit_velo_df_copy = exit_velo_df.copy() | |
# exit_velo_df = exit_velo_df_copy.copy() | |
end_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', | |
'double', 'sac_fly', 'force_out', 'home_run', | |
'grounded_into_double_play', 'fielders_choice', 'field_error', | |
'triple', 'sac_bunt', 'double_play', 'intent_walk', | |
'fielders_choice_out', 'strikeout_double_play', | |
'sac_fly_double_play', 'catcher_interf', 'other_out'] | |
exit_velo_df['pa'] = exit_velo_df.event_type.isin(end_codes) | |
#exit_velo_df['pa'] = 1 | |
exit_velo_df['k'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'strikeout' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()]))) | |
exit_velo_df['bb'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'walk' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()]))) | |
#exit_velo_df['k_minus_bb'] = exit_velo_df['k'].astype(np.float32)-exit_velo_df['bb'].astype(np.float32) | |
exit_velo_df['bb_minus_k'] = exit_velo_df['bb'].astype(np.float32)-exit_velo_df['k'].astype(np.float32) | |
exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id']) | |
swing_codes = ['Swinging Strike', 'In play, no out', | |
'Foul', 'In play, out(s)', | |
'In play, run(s)', 'Swinging Strike (Blocked)', | |
'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout'] | |
swings_in = ['Swinging Strike', 'In play, no out', | |
'Foul', 'In play, out(s)', | |
'In play, run(s)', 'Swinging Strike (Blocked)', | |
'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout'] | |
swing_strike_codes = ['Swinging Strike', | |
'Swinging Strike (Blocked)','Missed Bunt','Foul Tip','Swinging Pitchout'] | |
contact_codes = ['In play, no out', | |
'Foul', 'In play, out(s)', | |
'In play, run(s)', | |
'Foul Bunt'] | |
codes_in = ['In play, out(s)', | |
'Swinging Strike', | |
'Ball', | |
'Foul', | |
'In play, no out', | |
'Called Strike', | |
'Foul Tip', | |
'In play, run(s)', | |
'Hit By Pitch', | |
'Ball In Dirt', | |
'Pitchout', | |
'Swinging Strike (Blocked)', | |
'Foul Bunt', | |
'Missed Bunt', | |
'Foul Pitchout', | |
'Intent Ball', | |
'Swinging Pitchout'] | |
exit_velo_df['in_zone'] = exit_velo_df['zone'] < 10 | |
exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id']) | |
exit_velo_df_codes = exit_velo_df[exit_velo_df.play_description.isin(codes_in)].dropna(subset=['in_zone']) | |
exit_velo_df_codes['bip'] = ~exit_velo_df_codes.launch_speed.isna() | |
conditions = [ | |
(exit_velo_df_codes['launch_speed'].isna()), | |
(exit_velo_df_codes['launch_speed']*1.5 - exit_velo_df_codes['launch_angle'] >= 117 ) & (exit_velo_df_codes['launch_speed'] + exit_velo_df_codes['launch_angle'] >= 124) & (exit_velo_df_codes['launch_speed'] > 98) & (exit_velo_df_codes['launch_angle'] >= 8) & (exit_velo_df_codes['launch_angle'] <= 50) | |
] | |
choices = [False,True] | |
exit_velo_df_codes['barrel'] = np.select(conditions, choices, default=np.nan) | |
conditions_ss = [ | |
(exit_velo_df_codes['launch_angle'].isna()), | |
(exit_velo_df_codes['launch_angle'] >= 8 ) * (exit_velo_df_codes['launch_angle'] <= 32 ) | |
] | |
choices_ss = [False,True] | |
exit_velo_df_codes['sweet_spot'] = np.select(conditions_ss, choices_ss, default=np.nan) | |
conditions_hh = [ | |
(exit_velo_df_codes['launch_speed'].isna()), | |
(exit_velo_df_codes['launch_speed'] >= 94.5 ) | |
] | |
choices_hh = [False,True] | |
exit_velo_df_codes['hard_hit'] = np.select(conditions_hh, choices_hh, default=np.nan) | |
conditions_tb = [ | |
(exit_velo_df_codes['event_type']=='single'), | |
(exit_velo_df_codes['event_type']=='double'), | |
(exit_velo_df_codes['event_type']=='triple'), | |
(exit_velo_df_codes['event_type']=='home_run'), | |
] | |
choices_tb = [1,2,3,4] | |
exit_velo_df_codes['tb'] = np.select(conditions_tb, choices_tb, default=np.nan) | |
conditions_woba = [ | |
(exit_velo_df_codes['event_type']=='walk'), | |
(exit_velo_df_codes['event_type']=='hit_by_pitch'), | |
(exit_velo_df_codes['event_type']=='single'), | |
(exit_velo_df_codes['event_type']=='double'), | |
(exit_velo_df_codes['event_type']=='triple'), | |
(exit_velo_df_codes['event_type']=='home_run'), | |
] | |
choices_woba = [0.705, | |
0.688, | |
0.897, | |
1.233, | |
1.612, | |
2.013] | |
exit_velo_df_codes['woba'] = np.select(conditions_woba, choices_woba, default=np.nan) | |
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', | |
'double', 'sac_fly', 'force_out', 'home_run', | |
'grounded_into_double_play', 'fielders_choice', 'field_error', | |
'triple', 'sac_bunt', 'double_play', | |
'fielders_choice_out', 'strikeout_double_play', | |
'sac_fly_double_play', 'other_out'] | |
conditions_woba_code = [ | |
(exit_velo_df_codes['event_type'].isin(woba_codes)) | |
] | |
choices_woba_code = [1] | |
exit_velo_df_codes['woba_codes'] = np.select(conditions_woba_code, choices_woba_code, default=np.nan) | |
#exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50) | |
#exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50) | |
exit_velo_df_codes['pitches'] = 1 | |
exit_velo_df_codes['whiffs'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')) else 0 for x in exit_velo_df_codes.play_code] | |
exit_velo_df_codes['csw'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')|(x == 'C')) else 0 for x in exit_velo_df_codes.play_code] | |
exit_velo_df_codes['swings'] = [1 if x in swings_in else 0 for x in exit_velo_df_codes.play_description] | |
exit_velo_df_codes['out_zone'] = exit_velo_df_codes.in_zone == False | |
exit_velo_df_codes['zone_swing'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1) | |
exit_velo_df_codes['zone_contact'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0) | |
exit_velo_df_codes['ozone_swing'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1) | |
exit_velo_df_codes['ozone_contact'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0) | |
exit_velo_df_codes_summ = exit_velo_df_codes.groupby(['batter_id','batter_name','level']).agg( | |
pa = ('pa','sum'), | |
k = ('k','sum'), | |
bb = ('bb','sum'), | |
bb_minus_k = ('bb_minus_k','sum'), | |
csw = ('csw','sum'), | |
bip = ('bip','sum'), | |
tb = ('tb','sum'), | |
woba = ('woba','sum'), | |
woba_codes = ('woba_codes','sum'), | |
hard_hit = ('hard_hit','sum'), | |
barrel = ('barrel','sum'), | |
sweet_spot = ('sweet_spot','sum'), | |
max_launch_speed = ('launch_speed','max'), | |
launch_speed_90 = ('launch_speed',percentile(90)), | |
launch_speed = ('launch_speed','mean'), | |
launch_angle = ('launch_angle','mean'), | |
pitches = ('pitches','sum'), | |
swings = ('swings','sum'), | |
in_zone = ('in_zone','sum'), | |
out_zone = ('out_zone','sum'), | |
whiffs = ('whiffs','sum'), | |
zone_swing = ('zone_swing','sum'), | |
zone_contact = ('zone_contact','sum'), | |
ozone_swing = ('ozone_swing','sum'), | |
ozone_contact = ('ozone_contact','sum'), | |
).reset_index() | |
#exit_velo_df_codes_summ['out_zone'] = ~exit_velo_df_codes_summ.in_zone | |
#bip_min_input = int(input()) | |
#bip_min = min(bip_min_input,50) | |
#exit_velo_df_codes_summ = exit_velo_df_codes_summ[exit_velo_df_codes_summ.balls_in_play>=bip_min] | |
exit_velo_df_codes_summ['k_percent'] = [exit_velo_df_codes_summ.k[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['bb_percent'] =[exit_velo_df_codes_summ.bb[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['bb_minus_k_percent'] =[exit_velo_df_codes_summ.bb_minus_k[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['csw_percent'] =[exit_velo_df_codes_summ.csw[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['sweet_spot_percent'] = [exit_velo_df_codes_summ.sweet_spot[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['woba_percent'] = [exit_velo_df_codes_summ.woba[x]/exit_velo_df_codes_summ.woba_codes[x] if exit_velo_df_codes_summ.woba_codes[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
#exit_velo_df_codes_summ['hard_hit_percent'] = [exit_velo_df_codes_summ.sweet_spot[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['hard_hit_percent'] = [exit_velo_df_codes_summ.hard_hit[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['barrel_percent'] = [exit_velo_df_codes_summ.barrel[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['zone_contact_percent'] = [exit_velo_df_codes_summ.zone_contact[x]/exit_velo_df_codes_summ.zone_swing[x] if exit_velo_df_codes_summ.zone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['zone_swing_percent'] = [exit_velo_df_codes_summ.zone_swing[x]/exit_velo_df_codes_summ.in_zone[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['zone_percent'] = [exit_velo_df_codes_summ.in_zone[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['chase_percent'] = [exit_velo_df_codes_summ.ozone_swing[x]/(exit_velo_df_codes_summ.pitches[x] - exit_velo_df_codes_summ.in_zone[x]) if (exit_velo_df_codes_summ.pitches[x]- exit_velo_df_codes_summ.in_zone[x]) != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['chase_contact'] = [exit_velo_df_codes_summ.ozone_contact[x]/exit_velo_df_codes_summ.ozone_swing[x] if exit_velo_df_codes_summ.ozone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['swing_percent'] = [exit_velo_df_codes_summ.swings[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['whiff_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.swings[x] if exit_velo_df_codes_summ.swings[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ['swstr_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] | |
exit_velo_df_codes_summ = exit_velo_df_codes_summ.dropna(subset=['bip']) | |
woba_list = ['woba'] | |
pa_list = ['k','bb','bb_minus_k'] | |
balls_in_play_list = ['hard_hit','launch_speed','launch_speed_90','launch_angle','barrel','sweet_spot'] | |
pitches_list = ['zone_percent','swing_percent','sw_str','csw'] | |
swings_list = ['whiff_percent'] | |
in_zone_pitches_list = ['zone_swing'] | |
in_zone_swings_list = ['zone_contact'] | |
out_zone_pitches_list = ['chase_percent'] | |
out_zone_swings_list = ['chase_contact'] | |
plot_dict = { | |
'k':{'x_axis':'Plate Appearances','y_axis':'K%','title':'K%','x_value':'k','x_range':[0.0,0.1,0.2,0.3,0.4],'percent':True,'percentile_label':'k_percent','flip_p':True,'percentile':False,'avg_adjust':False}, | |
'bb':{'x_axis':'Plate Appearances','y_axis':'BB%','title':'BB%','x_value':'bb','x_range':[0.0,0.1,0.2,0.3],'percent':True,'percentile_label':'bb_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'bb_minus_k':{'x_axis':'Plate Appearances','y_axis':'BB-K%','title':'BB-K%','x_value':'bb_minus_k','x_range':[-0.3,-0.2,-0.1,0,0.1,0.2],'percent':True,'percentile_label':'bb_minus_k_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'csw':{'x_axis':'Pitches','y_axis':'CSW%','title':'CSW%','x_value':'csw','x_range':[.2,.25,.3,.35,.4],'percent':True,'percentile_label':'csw_percent','flip_p':True,'percentile':False,'avg_adjust':False}, | |
'woba':{'x_axis':'wOBA PA','y_axis':'wOBA','title':'wOBA','x_value':'woba','x_range':[.20,.30,.40,.50],'percent':False,'percentile_label':'woba_percent','flip_p':False,'percentile':False,'avg_adjust':True}, | |
'launch_speed':{'x_axis':'Balls In Play','y_axis':'Exit Velocity','title':'Exit Velocity','x_value':'launch_speed','x_range':[85,90,95,100],'percent':False,'percentile_label':'launch_speed','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'launch_speed_90':{'x_axis':'Balls In Play','y_axis':'90th Percentile Exit Velocity','title':'90th Percentile Exit Velocity','x_value':'launch_speed','x_range':[95,100,105,110,115],'percent':False,'percentile_label':'launch_speed_90','flip_p':False,'percentile':True,'avg_adjust':False}, | |
'hard_hit':{'x_axis':'Balls In Play','y_axis':'HardHit%','title':'HardHit%','x_value':'hard_hit','x_range':[0.2,0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'hard_hit_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'sweet_spot':{'x_axis':'Balls In Play','y_axis':'SweetSpot%','title':'SweetSpot%','x_value':'sweet_spot','x_range':[0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'sweet_spot_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'launch_angle':{'x_axis':'Balls In Play','y_axis':'Launch Angle','title':'Launch Angle','x_value':'launch_angle','x_range':[-20,-10,0,10,20],'percent':False,'percentile_label':'launch_angle','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'barrel':{'x_axis':'Balls In Play','y_axis':'Barrel%','title':'Barrel%','x_value':'barrel','x_range':[0,0.05,0.10,.15,.20,.25,.30],'percent':True,'percentile_label':'barrel_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'zone_percent':{'x_axis':'Pitches','y_axis':'Zone%','title':'Zone%','x_value':'in_zone','x_range':[0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'zone_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'swing_percent':{'x_axis':'Pitches','y_axis':'Swing%','title':'Swing%','x_value':'swings','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'swing_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'whiff_percent':{'x_axis':'Swings','y_axis':'Whiff%','title':'Whiff%','x_value':'whiffs','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'whiff_rate','flip_p':True,'percentile':False,'avg_adjust':False}, | |
'sw_str':{'x_axis':'Pitches','y_axis':'SwStr%','title':'SwStr%','x_value':'whiffs','x_range':[0.0,0.05,0.1,0.15,0.2,0.25],'percent':True,'percentile_label':'swstr_rate','flip_p':True,'percentile':False,'avg_adjust':False}, | |
'zone_swing':{'x_axis':'In-Zone Pitches','y_axis':'Z-Swing%','title':'Z-Swing%','x_value':'zone_swing','x_range':[0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_swing_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'zone_contact':{'x_axis':'In-Zone Swings','y_axis':'Z-Contact%','title':'Z-Contact%','x_value':'zone_contact','x_range':[0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_contact_percent','flip_p':False,'percentile':False,'avg_adjust':False}, | |
'chase_percent':{'x_axis':'Out-of-Zone Pitches','y_axis':'O-Swing%','title':'O-Swing%','x_value':'ozone_swing','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'chase_percent','flip_p':True,'percentile':False,'avg_adjust':False}, | |
'chase_contact':{'x_axis':'Out-of-Zone Swings','y_axis':'O-Contact%','title':'O-Contact%','x_value':'ozone_contact','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'chase_contact','flip_p':False,'percentile':False,'avg_adjust':False},} | |
test_df = exit_velo_df.sort_values(by='batter_name').drop_duplicates(subset='batter_id').reset_index(drop=True)[['batter_id','batter_name']]#['pitcher'].to_dict() | |
test_df = test_df.dropna() | |
test_df['batter_id'] = test_df['batter_id'].astype(int) | |
test_df = test_df.set_index('batter_id') | |
#test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt']) | |
batter_dict = test_df['batter_name'].to_dict() | |
level_dict = {'MLB':'MLB','AAA':'AAA','AA':'AA','A+':'A+','A':'A'} | |
plot_dict_small = { | |
'k':'K%', | |
'bb':'BB%', | |
'csw':'CSW%', | |
'launch_speed':'Exit Velocity', | |
'launch_speed_90':'90th Percentile Exit Velocity', | |
'sweet_spot':'SweetSpot%', | |
'launch_angle':'Launch Angle', | |
'zone_percent':'Zone%', | |
'barrel':'Barrel%', | |
'swing_percent':'Swing%', | |
'whiff_percent':'Whiff%', | |
'sw_str':'SwStr%', | |
'zone_swing':'Z-Swing%', | |
'zone_contact':'Z-Contact%', | |
'chase_percent':'O-Swing%', | |
'chase_contact':'O-Contact%',} | |
def server(input,output,session): | |
def plot(): | |
# np.random.seed(19680801) | |
# x = 100 + 15 * np.random.randn(437) | |
# fig, ax = plt.subplots() | |
# ax.hist(x, input.n(), density=True) | |
# return fig | |
sns.set_theme(style="whitegrid", palette="pastel") | |
if input.id() is "": | |
fig = plt.figure(figsize=(12, 12)) | |
fig.text(s='Please Select a Pitcher',x=0.5,y=0.5) | |
return | |
swing_min = int(input.n()) | |
fig, ax = plt.subplots(1, 1, figsize=(10, 10)) | |
fig.set_facecolor('white') | |
#ax.set_facecolor('white') | |
#fig.patch.set_facecolor('lightblue') | |
print(input.stat_id()) | |
if input.stat_id() in pa_list: | |
print('we hAVE MADE IT TO THIS PART OF THE CODE') | |
if input.stat_id() in pa_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.pa==1)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'pa' | |
print('this is short') | |
print(elly_zone_df) | |
if input.stat_id() in balls_in_play_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.bip)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'bip' | |
#print('this is short') | |
if input.stat_id() in balls_in_play_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.bip)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'bip' | |
print('this is short') | |
if input.stat_id() in pitches_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.pitches == 1)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'pitches' | |
if input.stat_id() in swings_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'swings' | |
if input.stat_id() in in_zone_pitches_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.in_zone)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'in_zone' | |
if input.stat_id() in in_zone_swings_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.zone_swing)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'zone_swing' | |
if input.stat_id() in out_zone_pitches_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.in_zone == False)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'out_zone' | |
if input.stat_id() in out_zone_swings_list: | |
elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.ozone_swing)&(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] | |
divisor_x = 'ozone_swing' | |
# penguins = sns.load_dataset("penguins") | |
# sns.histplot(data=penguins, x="flipper_length_mm") | |
# print('we made it here:') | |
# print(int(input.id())) | |
# print(input.stat_id()) | |
# print(input.level_id()) | |
# print(exit_velo_df_codes[(exit_velo_df_codes.batter_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())]) | |
# print(exit_velo_df_codes.columns) | |
# print(elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()) | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ.copy() | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.set_index('batter_id','batter_name','level') | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new[divisor_x] >= int(input.n())] | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.level==input.level_id()] | |
exit_velo_df_codes_summ_rank = exit_velo_df_codes_summ_new.rank(method='max',ascending=False) | |
exit_velo_df_codes_summ_rank.columns = exit_velo_df_codes_summ_rank.columns+['_rank'] | |
exit_velo_df_codes_summ_rank_percent = exit_velo_df_codes_summ_new.rank(pct=True) | |
exit_velo_df_codes_summ_rank_percent.columns = exit_velo_df_codes_summ_rank_percent.columns+['_percent'] | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.reset_index() | |
exit_velo_df_codes_summ_rank = exit_velo_df_codes_summ_rank.reset_index() | |
exit_velo_df_codes_summ_rank_percent = exit_velo_df_codes_summ_rank_percent.reset_index() | |
print('Table columns:') | |
exit_velo_df_codes_summ_new.batter_id = exit_velo_df_codes_summ_new.batter_id.astype(int) | |
exit_velo_df_codes_summ_rank.batter_id = exit_velo_df_codes_summ_rank.batter_id.astype(int) | |
exit_velo_df_codes_summ_rank_percent.batter_id = exit_velo_df_codes_summ_rank_percent.batter_id.astype(int) | |
print('Table columns2:') | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.merge(exit_velo_df_codes_summ_rank,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_rank']) | |
exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.merge(exit_velo_df_codes_summ_rank_percent,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_percent']) | |
print(exit_velo_df_codes_summ_new) | |
print(exit_velo_df_codes_summ_rank) | |
print(exit_velo_df_codes_summ_rank_percent) | |
#sns.scatterplot(x=data_df.launch_speed_90,y=data_df.zone_contact,color=colour_palette[0],s=75,label=int(input.id())) | |
exit_velo_df_codes_summ_new_select = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.batter_id == int(input.id())].reset_index(drop=True) | |
print('whiffing') | |
print(exit_velo_df_codes) | |
print('Player _df:') | |
print(exit_velo_df_codes_summ_new_select) | |
if len(exit_velo_df_codes_summ_new_select) < 1: | |
ax.text(x=0.5,y=0.5,s='Please Select Different Parameters to Produce a plot',fontsize=18,ha='center') | |
return | |
p = inflect.engine() | |
exit_velo_df_codes_summ_new_select = exit_velo_df_codes_summ_new_select.loc[:,~exit_velo_df_codes_summ_new_select.columns.duplicated(keep='last')].copy() | |
print('Table for the player:') | |
print(list(exit_velo_df_codes_summ_new_select.columns)) | |
print(plot_dict[input.stat_id()]["percentile_label"]) | |
print(plot_dict[input.stat_id()]["percentile_label"]+'_percent') | |
print(exit_velo_df_codes_summ_new_select) | |
print(1*plot_dict[input.stat_id()]["flip_p"]) | |
print(round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2)) | |
print((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100) | |
# print(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+'_percent']) | |
if plot_dict[input.stat_id()]['percent']: | |
label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum():.1%}' | |
label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' | |
#label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}' | |
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1)) | |
else: | |
label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum():.1f}' | |
label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' | |
#label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f}' | |
#ax.yaxis.set_major_formatter(mtick.int) | |
if plot_dict[input.stat_id()]['percentile']: | |
label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].quantile(0.9):.1f}' | |
label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].quantile(0.9):.1f} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' | |
#label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}' | |
#ax.yaxis.set_major_formatter(mtick.int) | |
print(plot_dict[input.stat_id()]["x_value"]) | |
print(divisor_x) | |
# exit_velo_df_codes_summ_new = exit_velo_df_codes_summ.copy() | |
# exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.balls_in_play >= int(input.n())] | |
# exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.level==input.level_id()] | |
print('this is here:') | |
print(exit_velo_df_codes_summ_new.head()) | |
print(exit_velo_df_codes_summ_new.columns) | |
if plot_dict[input.stat_id()]["flip_p"] == False: | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5) | |
hard_hit_dates = [(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1)] | |
hard_hit_text = ['90th %','75th %','25th %','10th %'] | |
for i, x in enumerate(hard_hit_dates): | |
text(min(input.n()+input.n()/100,+input.n()+1), x ,hard_hit_text[i], rotation=0, ha='left', | |
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2)) | |
if plot_dict[input.stat_id()]["flip_p"] == True: | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5) | |
ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5) | |
hard_hit_dates = [(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25), | |
(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1)] | |
hard_hit_text = ['10th %','25th %','75th %','90th %'] | |
for i, x in enumerate(hard_hit_dates): | |
text(min(input.n()+input.n()/100,input.n()+input.n()+3), x ,hard_hit_text[i], rotation=0, ha='left', | |
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2)) | |
if plot_dict[input.stat_id()]["percentile"] == False: | |
ax.hlines(y=exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1) | |
ax.hlines(y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2) | |
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).rolling(window=swing_min).sum()/swing_min,color=colour_palette[0],linewidth=3,ax=ax) | |
if plot_dict[input.stat_id()]["percentile"] == True: | |
ax.hlines(y=exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1) | |
ax.hlines(y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2) | |
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).rolling(window=swing_min).quantile(0.9),color=colour_palette[0],linewidth=3,ax=ax) | |
#ax.set_xlim(input.n(),exit_velo_df_small.pitch.max()) | |
#plt.yticks([0,0.2,0.4,0.6,0.8,1]) | |
#ax.set_ylim(math.floor((min(exit_velo_df_codes_summ.zone_contact)/5)*100)*5/100,1) | |
ax.set_xlim(math.floor(swing_min),len(elly_zone_df)) | |
ax.set_title(f'{batter_dict[int(input.id())]} - {input.level_id()} - {swing_min} {plot_dict[input.stat_id()]["x_axis"]} Rolling {plot_dict[input.stat_id()]["title"]}', fontsize=16,fontname='Century Gothic',) | |
#vals = ax.get_yticks() | |
ax.set_xlabel(plot_dict[input.stat_id()]['x_axis'], fontsize=16,fontname='Century Gothic') | |
ax.set_ylabel(plot_dict[input.stat_id()]['y_axis'], fontsize=16,fontname='Century Gothic') | |
#fig.axes[0].invert_yaxis() | |
#fig.subplots_adjust(wspace=.02, hspace=.02) | |
#ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) | |
ax.set_yticks(plot_dict[input.stat_id()]["x_range"]) | |
#fig.colorbar(plot_dist, ax=ax) | |
#fig.colorbar(plot_dist) | |
#fig.axes[0].invert_yaxis() | |
ax.legend(fontsize='16') | |
fig.text(x=0.03,y=0.02,s='By: @TJStats',fontname='Century Gothic') | |
fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right',fontname='Century Gothic') | |
fig.tight_layout() | |
rolling_batter = App(ui.page_fluid( | |
ui.tags.base(href=base_url), | |
ui.tags.div( | |
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"}, | |
ui.tags.style( | |
""" | |
h4 { | |
margin-top: 1em;font-size:35px; | |
} | |
h2{ | |
font-size:25px; | |
} | |
""" | |
), | |
shinyswatch.theme.simplex(), | |
ui.tags.h4("TJStats"), | |
ui.tags.i("Baseball Analytics and Visualizations"), | |
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""), | |
ui.navset_tab( | |
ui.nav_control( | |
ui.a( | |
"Home", | |
href="home/" | |
), | |
), | |
ui.nav_menu( | |
"Batter Charts", | |
ui.nav_control( | |
ui.a( | |
"Batting Rolling", | |
href="rolling_batter/" | |
), | |
ui.a( | |
"Spray & Damage", | |
href="spray/" | |
), | |
ui.a( | |
"Decision Value", | |
href="decision_value/" | |
), | |
# ui.a( | |
# "Damage Model", | |
# href="damage_model/" | |
# ), | |
ui.a( | |
"Batter Scatter", | |
href="batter_scatter/" | |
), | |
# ui.a( | |
# "EV vs LA Plot", | |
# href="ev_angle/" | |
# ), | |
ui.a( | |
"Statcast Compare", | |
href="statcast_compare/" | |
) | |
), | |
), | |
ui.nav_menu( | |
"Pitcher Charts", | |
ui.nav_control( | |
ui.a( | |
"Pitcher Rolling", | |
href="rolling_pitcher/" | |
), | |
ui.a( | |
"Pitcher Summary", | |
href="pitching_summary_graphic_new/" | |
), | |
ui.a( | |
"Pitcher Scatter", | |
href="pitcher_scatter/" | |
) | |
), | |
)),ui.row( | |
ui.layout_sidebar( | |
ui.panel_sidebar( | |
ui.input_select("id", "Select Pitcher",batter_dict,selected=675911,width=1,size=1,selectize=True), | |
ui.input_select("level_id", "Select Level",level_dict,width=1,size=1), | |
ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1,size=1), | |
ui.input_numeric("n", "Rolling Window Size", value=50), | |
ui.input_action_button("go", "Generate",class_="btn-primary"), | |
ui.output_table("result") | |
), | |
ui.panel_main( | |
ui.output_plot("plot",height = "1000px",width="1000px") | |
), | |
)),)),server) |