nesticot's picture
Upload 2 files
6d0de70 verified
raw
history blame
25.1 kB
from shiny import ui, render, App
import matplotlib.image as mpimg
import pandas as pd
import pygsheets
import pytz
from datetime import datetime
import numpy as np
import joblib
print('Starting')
df_2024 = pd.read_csv('2024_spring_data.csv',index_col=[0])
print('Starting')
spring_teams = df_2024.groupby(['pitcher_id']).tail(1)[['pitcher_id','pitcher_team']].set_index(['pitcher_id'])['pitcher_team'].to_dict()
df_2024['vy_f'] = -(df_2024['vy0']**2 - (2 * df_2024['ay'] * (df_2024['y0'] - 17/12)))**0.5
df_2024['t'] = (df_2024['vy_f'] - df_2024['vy0']) / df_2024['ay']
df_2024['vz_f'] = (df_2024['vz0']) + (df_2024['az'] * df_2024['t'])
df_2024['vaa'] = -np.arctan(df_2024['vz_f'] / df_2024['vy_f']) * (180 / np.pi)
#df_2024['vy_f'] = -(df_2024['vy0']**2 - (2 * df_2024['ay'] * (df_2024['y0'] - 17/12)))**0.5
#df_2024['t'] = (df_2024['vy_f'] - df_2024['vy0']) / df_2024['ay']
df_2024['vx_f'] = (df_2024['vx0']) + (df_2024['ax'] * df_2024['t'])
df_2024['haa'] = -np.arctan(df_2024['vx_f'] / df_2024['vy_f']) * (180 / np.pi)
grouped_ivb_2023 = pd.read_csv('2023_pitch_group_data.csv',index_col=[0,3])
model = joblib.load('tjstuff_model_20240123.joblib')
def percentile(n):
def percentile_(x):
return x.quantile(n)
percentile_.__name__ = 'percentile_{:02.0f}'.format(n*100)
return percentile_
def df_clean(df):
df_copy = df.copy()
df_copy.loc[df_copy['pitcher_hand'] == 'L','hb'] *= -1
df_copy.loc[df_copy['pitcher_hand'] == 'L','x0'] *= -1
df_copy.loc[df_copy['pitcher_hand'] == 'L','spin_direction'] = 360 - df_copy.loc[df_copy['pitcher_hand'] == 'L','spin_direction']
df_copy['pitch_l'] = [1 if x == 'L' else 0 for x in df_copy['pitcher_hand']]
df_copy['bat_l'] = [1 if x == 'L' else 0 for x in df_copy['batter_hand']]
df_copy = df_copy[~df_copy.pitch_type.isin(["EP", "PO", "KN", "FO", "CS", "SC", "FA"])].reset_index(drop=True)
df_copy['pitch_type'] = df_copy['pitch_type'].replace({'FT':'SI','KC':'CU','ST':'SL','SV':'SL'})
# df_copy['des_new'] = df_copy['play_description'].map(des_dict)
# df_copy['ev_new'] = df_copy.loc[df_copy['des_new'] == 'hit_into_play','event_type'].map(ev_dict)
# df_copy.loc[df_copy['des_new']=='hit_into_play','des_new'] = df_copy.loc[df_copy['des_new']=='hit_into_play','ev_new']
# df_copy = df_copy.dropna(subset=['des_new'])
# des_values = df_copy.groupby(['des_new'])['delta_run_exp'].mean()
# df_copy = df_copy.merge(des_values,left_on='des_new',right_on='des_new',suffixes=['','_mean'])
df_copy_fb_sum = df_copy[df_copy.pitch_type.isin(["FF", "FC", "SI"])].groupby(['pitcher_id']).agg(
fb_velo = ('start_speed','mean'),
fb_max_ivb = ('ivb',percentile(0.9)),
fb_max_x = ('hb',percentile(0.9)),
fb_min_x = ('hb',percentile(0.1)),
fb_max_velo = ('start_speed',percentile(0.9)),
fb_axis = ('spin_direction','mean'),
)
df_copy = df_copy.merge(df_copy_fb_sum,left_on='pitcher_id',right_index=True,how='left')
df_copy['fb_velo_diff'] = df_copy['start_speed']- df_copy['fb_velo']
df_copy['fb_max_ivb_diff'] = df_copy['ivb']- df_copy['fb_max_ivb']
df_copy['fb_max_hb_diff'] = df_copy['hb']- df_copy['fb_max_x']
df_copy['fb_min_hb_diff'] = df_copy['hb']- df_copy['fb_min_x']
df_copy['fb_max_velo_diff'] = df_copy['start_speed']- df_copy['fb_max_velo']
df_copy['fb_axis_diff'] = df_copy['spin_direction']- df_copy['fb_axis']
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_velo_diff'] = 0
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_ivb_diff'] = 0
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_hb_diff'] = 0
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_min_hb_diff'] = 0
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_max_velo_diff'] = 0
# df_copy.loc[df_copy.pitch_type.isin(["FF", "FC", "SI"]),'fb_axis_diff'] = 0
df_copy['max_speed'] = df_copy.groupby(['pitcher_id'])['start_speed'].transform('max')
df_copy['max_speed_diff'] = df_copy['start_speed'] - df_copy['max_speed']
df_copy['max_ivb'] = df_copy.groupby(['pitcher_id'])['ivb'].transform('max')
df_copy['max_ivb_diff'] = df_copy['ivb'] - df_copy['max_ivb']
df_copy['vy_f'] = -(df_copy['vy0']**2 - (2 * df_copy['ay'] * (df_copy['y0'] - 17/12)))**0.5
df_copy['t'] = (df_copy['vy_f'] - df_copy['vy0']) / df_copy['ay']
df_copy['vz_f'] = (df_copy['vz0']) + (df_copy['az'] * df_copy['t'])
df_copy['vaa'] = -np.arctan(df_copy['vz_f'] / df_copy['vy_f']) * (180 / np.pi)
#df_copy['vy_f'] = -(df_copy['vy0']**2 - (2 * df_copy['ay'] * (df_copy['y0'] - 17/12)))**0.5
#df_copy['t'] = (df_copy['vy_f'] - df_copy['vy0']) / df_copy['ay']
df_copy['vx_f'] = (df_copy['vx0']) + (df_copy['ax'] * df_copy['t'])
df_copy['haa'] = -np.arctan(df_copy['vx_f'] / df_copy['vy_f']) * (180 / np.pi)
# df_copy['x_diff'] = df_copy['x0'] - df_copy['px']
# df_copy['z_diff'] = df_copy['z0'] - df_copy['pz']
# df_copy['vaa'] = np.arctan(df_copy['z_diff'] / df_copy['release_pos_y']) * 360 / np.pi
# df_copy['haa'] = np.arctan(-df_copy['x_diff'] / df_copy['release_pos_y']) * 360 / np.pi
df_copy = df_copy.dropna(subset=['pitch_type']).fillna(0)
return df_copy
app_ui = ui.page_fluid(
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_date_range("date_range_id", "Date range input",start = df_2024.game_date.min(),
end = df_2024.game_date.max(),width=2,min=df_2024.game_date.min(),
max=df_2024.game_date.max()),width=2),
ui.panel_main(
ui.navset_tab(
# ui.nav("Raw Data",
# ui.output_data_frame("raw_table")),
ui.nav("Pitch Data",
ui.output_data_frame("table")),
ui.nav("Pitch Data (Daily)",
ui.output_data_frame("table_daily")),
ui.nav("2023 vs Spring",
ui.output_data_frame("table_2023")),
ui.nav("2023 vs Spring Difference",
ui.output_data_frame("table_difference")),
# ui.nav("New Pitches",
# ui.output_data_frame("table_new")),
ui.nav("tjStuff+",
ui.output_data_frame("table_stuff")),
ui.nav("tjStuff+ (Daily)",
ui.output_data_frame("table_stuff_day")),
))))
from urllib.request import Request, urlopen
from shiny import App, reactive, ui
from shiny.ui import h2, tags
# importing OpenCV(cv2) module
#print(app_ui)
def server(input, output, session):
# @output
# @render.data_frame
# def raw_table():
# return render.DataGrid(
# df_2024,
# width='fit-content',
# height=750,
# filters=True,
# )
@output
@render.data_frame
def table():
grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_team','pitcher_hand','pitch_type']).agg(
pitches = ('start_speed','count'),
start_speed = ('start_speed','mean'),
ivb = ('ivb','mean'),
hb = ('hb','mean'),
spin_rate = ('spin_rate','mean'),
vaa = ('vaa','mean'),
haa = ('haa','mean'),
horizontal_release = ('x0','mean'),
vertical_release = ('z0','mean'),
extension = ('extension','mean')).round(1).reset_index()
#grouped_ivb = grouped_ivb.set_index(['pitcher_id']).reset_index()
# return grouped_ivb
return render.DataGrid(
grouped_ivb,
width='fit-content',
height=750,
filters=True,
)
@output
@render.data_frame
def table_daily():
grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_team','pitcher_hand','pitch_type','game_date']).agg(
pitches = ('start_speed','count'),
start_speed = ('start_speed','mean'),
ivb = ('ivb','mean'),
hb = ('hb','mean'),
spin_rate = ('spin_rate','mean'),
vaa = ('vaa','mean'),
haa = ('haa','mean'),
horizontal_release = ('x0','mean'),
vertical_release = ('z0','mean'),
extension = ('extension','mean')).round(1).reset_index()
#grouped_ivb = grouped_ivb.set_index(['pitcher_id']).reset_index()
# return grouped_ivb
return render.DataGrid(
grouped_ivb,
width='fit-content',
height=750,
filters=True,
)
#return grouped_ivb
@output
@render.data_frame
def table_2023():
grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg(
pitches = ('start_speed','count'),
start_speed = ('start_speed','mean'),
ivb = ('ivb','mean'),
hb = ('hb','mean'),
spin_rate = ('spin_rate','mean'),
vaa = ('vaa','mean'),
haa = ('haa','mean'),
horizontal_release = ('x0','mean'),
vertical_release = ('z0','mean'),
extension = ('extension','mean')).round(1).reset_index()
grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type'])
#####
ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb,
left_index=True,
right_index=True,
how='right',suffixes=['_2023','_spring']).reset_index()
ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring']
ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring']
#ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring']
# ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type',
# 'pitches_spring', 'start_speed_spring', 'ivb_spring',
# 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring',
# 'vertical_release_spring', 'extension_spring']]
ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams)
ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',])
return render.DataGrid(
ivb_merged[['pitches_2023','start_speed_2023', 'ivb_2023', 'hb_2023',
'spin_rate_2023', 'vaa_2023','haa_2023', 'horizontal_release_2023', 'vertical_release_2023',
'extension_2023','pitches_spring','start_speed_spring', 'ivb_spring', 'hb_spring',
'spin_rate_spring','vaa_spring','haa_spring', 'horizontal_release_spring', 'vertical_release_spring',
'extension_spring',]].reset_index(),
width='fit-content',
height=750,
filters=True,
)
@output
@render.data_frame
def table_difference():
grouped_ivb = df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])].groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg(
pitches = ('start_speed','count'),
start_speed = ('start_speed','mean'),
ivb = ('ivb','mean'),
hb = ('hb','mean'),
spin_rate = ('spin_rate','mean'),
vaa = ('vaa','mean'),
haa = ('haa','mean'),
horizontal_release = ('x0','mean'),
vertical_release = ('z0','mean'),
extension = ('extension','mean')).round(1).reset_index()
grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type'])
#####
ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb,
left_index=True,
right_index=True,
how='right',suffixes=['_2023','_spring']).reset_index()
ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring']
ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring']
#ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring']
# ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type',
# 'pitches_spring', 'start_speed_spring', 'ivb_spring',
# 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring',
# 'vertical_release_spring', 'extension_spring']]
ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams)
ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',])
ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference','spin_rate_difference','vaa_difference','haa_difference',
'horizontal_release_difference', 'vertical_release_difference',
'extension_difference']] = ivb_merged[['start_speed_spring', 'ivb_spring', 'hb_spring',
'spin_rate_spring', 'vaa_spring','haa_spring','horizontal_release_spring', 'vertical_release_spring',
'extension_spring']].values - ivb_merged[['start_speed_2023', 'ivb_2023', 'hb_2023',
'spin_rate_2023', 'vaa_2023','haa_2023','horizontal_release_2023', 'vertical_release_2023',
'extension_2023']].values
return render.DataGrid(
ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference',
'spin_rate_difference',
'vaa_difference','haa_difference','horizontal_release_difference', 'vertical_release_difference',
'extension_difference']].reset_index(),
width='fit-content',
height=750,
filters=True,
)
# @output
# @render.data_frame
# def table_new():
# grouped_ivb = df_2024.groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type']).agg(
# pitches = ('start_speed','count'),
# start_speed = ('start_speed','mean'),
# ivb = ('ivb','mean'),
# hb = ('hb','mean'),
# spin_rate = ('spin_rate','mean'),
# vaa = ('vaa','mean'),
# haa = ('haa','mean'),
# horizontal_release = ('x0','mean'),
# vertical_release = ('z0','mean'),
# extension = ('extension','mean')).round(1).reset_index()
# grouped_ivb = grouped_ivb.set_index(['pitcher_id','pitch_type'])
# grouped_ivb_2023 = pd.read_csv('2023_pitch_group_data.csv',index_col=[0,3])
# #####
# ivb_merged = grouped_ivb_2023.merge(right=grouped_ivb,
# left_index=True,
# right_index=True,
# how='right',suffixes=['_2023','_spring']).reset_index()
# ivb_merged['pitcher_name'] = ivb_merged['pitcher_name_spring']
# ivb_merged['pitcher_hand'] = ivb_merged['pitcher_hand_spring']
# #ivb_merged['pitch_type'] = ivb_merged['pitch_type_spring']
# # ivb_merged = ivb_merged[['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type',
# # 'pitches_spring', 'start_speed_spring', 'ivb_spring',
# # 'hb_spring', 'spin_rate_spring', 'horizontal_release_spring',
# # 'vertical_release_spring', 'extension_spring']]
# ivb_merged['pitcher_team'] = ivb_merged['pitcher_id'].map(spring_teams)
# ivb_merged = ivb_merged.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',])
# ivb_merged[['start_speed_difference', 'ivb_difference', 'hb_difference','spin_rate_difference','vaa_difference','haa_difference',
# 'horizontal_release_difference', 'vertical_release_difference',
# 'extension_difference']] = ivb_merged[['start_speed_spring', 'ivb_spring', 'hb_spring',
# 'spin_rate_spring', 'vaa_spring','haa_spring','horizontal_release_spring', 'vertical_release_spring',
# 'extension_spring']].values - ivb_merged[['start_speed_2023', 'ivb_2023', 'hb_2023',
# 'spin_rate_2023', 'vaa_2023','haa_2023','horizontal_release_2023', 'vertical_release_2023',
# 'extension_2023']].values
# ivb_merged_new = ivb_merged.reset_index()
# ivb_merged_new = ivb_merged_new[
# pd.isnull(ivb_merged_new['pitches_2023']) &
# pd.notnull(ivb_merged_new['pitches_spring']) &
# ivb_merged_new['pitcher_id'].isin(ivb_merged_new[pd.notnull(ivb_merged_new['pitches_2023'])]['pitcher_id'])
# ][
# ['pitcher_id', 'pitcher_name', 'pitcher_hand', 'pitch_type',
# 'pitches_spring', 'start_speed_spring', 'ivb_spring',
# 'hb_spring', 'spin_rate_spring', 'vaa_spring','haa_spring', 'horizontal_release_spring',
# 'vertical_release_spring', 'extension_spring']
# ]#.reset_index()
# # ivb_merged_new = ivb_merged.copy().reset_index()
# ivb_merged_new['pitcher_team'] = ivb_merged_new['pitcher_id'].map(spring_teams)
# ivb_merged_new = ivb_merged_new.set_index(['pitcher_id', 'pitcher_name','pitcher_team', 'pitcher_hand', 'pitch_type',])
# #ivb_merged_new.to_clipboard(header=False)
# df_2024_date_min = df_2024.groupby(['pitcher_id','pitcher_name','pitcher_hand','pitch_type','game_date'])[['game_date']].min()
# ivb_merged_new = ivb_merged_new.merge(right=df_2024_date_min,
# left_index=True,
# right_index=True)
# ivb_merged_new = ivb_merged_new.drop(columns=['game_date'])
# return render.DataGrid(
# ivb_merged_new.reset_index(),
# width='fit-content',
# height=750,
# filters=True,
# )
@output
@render.data_frame
def table_stuff():
df_2024_update = df_clean(df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])])
features = ['start_speed','spin_rate','extension','ivb','hb','x0','z0','fb_max_velo_diff','fb_max_ivb_diff','fb_max_hb_diff']
targets = ['delta_run_exp_mean']
from scipy import stats
df_2024_update['y_pred'] = model.predict(df_2024_update[features])
y_pred_mean = -0.0023964706
y_pred_std =0.0057581966
# y_pred_mean = -0.0136602735
# y_pred_std = 0.006434487
## tjStuff+
df_2024_stuff = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team']).agg(
pitches = ('y_pred','count'),
run_exp = ('y_pred','mean'),)
# run_exp_loc = ('y_pred_loc','mean'))
df_2024_stuff['run_exp_mean'] = y_pred_mean
df_2024_stuff['run_exp_std'] = y_pred_std
df_2024_stuff_50 = df_2024_stuff[df_2024_stuff.pitches >= 1]
df_2024_stuff_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_50.run_exp + df_2024_stuff_50.run_exp_mean) / df_2024_stuff_50.run_exp_std)
df_2024_stuff_pitch = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','pitch_type']).agg(
pitches = ('y_pred','count'),
run_exp = ('y_pred','mean'),)
# run_exp_loc = ('y_pred_loc','mean'))
df_2024_stuff_pitch['run_exp_mean'] = y_pred_mean
df_2024_stuff_pitch['run_exp_std'] = y_pred_std
df_2024_stuff_pitch_50 = df_2024_stuff_pitch[df_2024_stuff_pitch.pitches >= 1]
df_2024_stuff_pitch_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_pitch_50.run_exp + df_2024_stuff_pitch_50.run_exp_mean) / df_2024_stuff_pitch_50.run_exp_std)
df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50.reset_index().pivot(index=['pitcher_id','pitcher_name','pitcher_team'],
columns=['pitch_type'],
values=['tj_stuff_plus'])
df_2024_stuff_pitch_50_pivot['all'] = df_2024_stuff_pitch_50_pivot.index.map(df_2024_stuff_50['tj_stuff_plus'].to_dict())
## Difference
print('Sheet6')
df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.sort_index(level=[1])
df_2024_stuff_pitch_50_pivot.columns = df_2024_stuff_pitch_50_pivot.columns.droplevel()
column_list = list(df_2024_stuff_pitch_50_pivot.columns[:-1])
column_list.append('All')
df_2024_stuff_pitch_50_pivot.columns = column_list
df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.applymap(lambda x: int(x) if not pd.isna(x) else x)
df_2024_stuff_pitch_50_pivot = df_2024_stuff_pitch_50_pivot.reset_index()
return render.DataGrid(
df_2024_stuff_pitch_50_pivot,
width='fit-content',
height=750,
filters=True)
@output
@render.data_frame
def table_stuff_day():
df_2024_update = df_clean(df_2024[(pd.to_datetime(df_2024['game_date']).dt.date>=input.date_range_id()[0])&
(pd.to_datetime(df_2024['game_date']).dt.date<=input.date_range_id()[1])])
print('made it here')
features = ['start_speed','spin_rate','extension','ivb','hb','x0','z0','fb_max_velo_diff','fb_max_ivb_diff','fb_max_hb_diff']
targets = ['delta_run_exp_mean']
from scipy import stats
df_2024_update['y_pred'] = model.predict(df_2024_update[features])
y_pred_mean = -0.0023964706
y_pred_std =0.0057581966
# y_pred_mean = -0.0136602735
# y_pred_std = 0.006434487
## tjStuff+
df_2024_stuff_daily = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','game_date']).agg(
pitches = ('y_pred','count'),
run_exp = ('y_pred','mean'),)
# run_exp_loc = ('y_pred_loc','mean'))
df_2024_stuff_daily['run_exp_mean'] = y_pred_mean
df_2024_stuff_daily['run_exp_std'] = y_pred_std
df_2024_stuff_daily_50 = df_2024_stuff_daily[df_2024_stuff_daily.pitches >= 1]
df_2024_stuff_daily_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_daily_50.run_exp + df_2024_stuff_daily_50.run_exp_mean) / df_2024_stuff_daily_50.run_exp_std)
df_2024_stuff_daily_pitch = df_2024_update.groupby(['pitcher_id','pitcher_name','pitcher_team','pitch_type','game_date']).agg(
pitches = ('y_pred','count'),
run_exp = ('y_pred','mean'),)
# run_exp_loc = ('y_pred_loc','mean'))
df_2024_stuff_daily_pitch['run_exp_mean'] = y_pred_mean
df_2024_stuff_daily_pitch['run_exp_std'] = y_pred_std
df_2024_stuff_daily_pitch_50 = df_2024_stuff_daily_pitch[df_2024_stuff_daily_pitch.pitches >= 1]
df_2024_stuff_daily_pitch_50['tj_stuff_plus'] = 100 + 10*((-df_2024_stuff_daily_pitch_50.run_exp + df_2024_stuff_daily_pitch_50.run_exp_mean) / df_2024_stuff_daily_pitch_50.run_exp_std)
df_2024_stuff_daily_pitch_50 = df_2024_stuff_daily_pitch_50.reset_index()
df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50.pivot(index=['pitcher_id','pitcher_name','pitcher_team','game_date'],
columns=['pitch_type'],
values=['tj_stuff_plus'])
print('made it here')
df_2024_stuff_daily_pitch_50_pivot['all'] = df_2024_stuff_daily_pitch_50_pivot.index.map(df_2024_stuff_daily_50['tj_stuff_plus'].to_dict())
df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.sort_index(level=[1,3])
print(df_2024_stuff_daily_pitch_50_pivot)
df_2024_stuff_daily_pitch_50_pivot.columns = df_2024_stuff_daily_pitch_50_pivot.columns.droplevel()
column_list = list(df_2024_stuff_daily_pitch_50_pivot.columns[:-1])
column_list.append('All')
df_2024_stuff_daily_pitch_50_pivot.columns = column_list
df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.applymap(lambda x: int(x) if not pd.isna(x) else x)
df_2024_stuff_daily_pitch_50_pivot = df_2024_stuff_daily_pitch_50_pivot.reset_index()
return render.DataGrid(
df_2024_stuff_daily_pitch_50_pivot,
width='fit-content',
height=750,
filters=True)
app = App(app_ui, server)