|
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui |
|
import datasets |
|
from datasets import load_dataset |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import numpy as np |
|
from scipy.stats import gaussian_kde |
|
import matplotlib |
|
from matplotlib.ticker import MaxNLocator |
|
from matplotlib.gridspec import GridSpec |
|
from scipy.stats import zscore |
|
import math |
|
import matplotlib |
|
from adjustText import adjust_text |
|
import matplotlib.ticker as mtick |
|
from shinywidgets import output_widget, render_widget |
|
import pandas as pd |
|
from configure import base_url |
|
import shinyswatch |
|
|
|
|
|
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv' ]) |
|
dataset_train = dataset['train'] |
|
df_2023 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) |
|
print(df_2023) |
|
|
|
|
|
df_2023['season'] = df_2023['game_date'].str[0:4].astype(int) |
|
|
|
|
|
|
|
df_2023['hit_x'] = df_2023['hit_x'] - 126 |
|
df_2023['hit_y'] = -df_2023['hit_y']+204.5 |
|
|
|
df_2023['hit_x_og'] = df_2023['hit_x'] |
|
df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] = -1*df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] |
|
df_2023['h_la'] = np.arctan(df_2023['hit_x'] / df_2023['hit_y'])*180/np.pi |
|
conditions_ss = [ |
|
(df_2023['h_la']<-15), |
|
(df_2023['h_la']<15)&(df_2023['h_la']>=-15), |
|
(df_2023['h_la']>=15) |
|
] |
|
|
|
choices_ss = ['Oppo','Straight','Pull'] |
|
df_2023['traj'] = np.select(conditions_ss, choices_ss, default=np.nan) |
|
df_2023['bip'] = [1 if x > 0 else np.nan for x in df_2023['launch_speed']] |
|
|
|
conditions_woba = [ |
|
(df_2023['event_type']=='walk'), |
|
(df_2023['event_type']=='hit_by_pitch'), |
|
(df_2023['event_type']=='single'), |
|
(df_2023['event_type']=='double'), |
|
(df_2023['event_type']=='triple'), |
|
(df_2023['event_type']=='home_run'), |
|
] |
|
|
|
|
|
choices_woba = [1, |
|
1, |
|
1, |
|
2, |
|
3, |
|
4] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_2023['woba'] = np.select(conditions_woba, choices_woba, default=0) |
|
|
|
choices_woba_train = [1, |
|
1, |
|
1, |
|
2, |
|
3, |
|
4] |
|
|
|
df_2023['woba_train'] = np.select(conditions_woba, choices_woba_train, default=0) |
|
|
|
|
|
df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['h_la','launch_angle']) |
|
df_2023_bip['h_la'] = df_2023_bip['h_la'].round(0) |
|
|
|
|
|
df_2023_bip['season'] = df_2023_bip['game_date'].str[0:4].astype(int) |
|
|
|
df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['launch_angle','bip']) |
|
df_2023_bip_train = df_2023_bip[df_2023_bip['season'] == 2023] |
|
|
|
batter_dict = df_2023_bip.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict() |
|
|
|
features = ['launch_angle','launch_speed','h_la'] |
|
target = ['woba_train'] |
|
|
|
df_2023_bip_train = df_2023_bip_train.dropna(subset=features) |
|
|
|
import joblib |
|
|
|
model = joblib.load('xtb_model.joblib') |
|
|
|
|
|
df_2023_bip_train['y_pred'] = [sum(x) for x in model.predict_proba(df_2023_bip_train[features]) * ([0,1,2,3,4])] |
|
|
|
|
|
df_2023_output = df_2023_bip_train.groupby(['batter_id','batter_name']).agg( |
|
bip = ('y_pred','count'), |
|
y_pred = ('y_pred','sum'), |
|
slgcon = ('woba','mean'), |
|
xslgcon = ('y_pred','mean'), |
|
launch_speed = ('launch_speed','mean'), |
|
launch_angle_std = ('launch_angle','median'), |
|
h_la_std = ('h_la','mean')) |
|
|
|
df_2023_output_copy = df_2023_output.copy() |
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
|
|
x = np.arange(30, 121,1 ) |
|
y = np.arange(-30, 61,1 ) |
|
z = np.arange(-45, 46,1 ) |
|
|
|
|
|
X, Y, Z = np.meshgrid(x, y, z, indexing='ij') |
|
|
|
x_flat = X.flatten() |
|
y_flat = Y.flatten() |
|
z_flat = Z.flatten() |
|
|
|
|
|
df = pd.DataFrame({'launch_speed': x_flat, 'launch_angle': y_flat,'h_la':z_flat}) |
|
|
|
df['y_pred'] = [sum(x) for x in model.predict_proba(df[features]) * ([0,1,2,3,4])] |
|
|
|
|
|
import matplotlib |
|
|
|
colour_palette = ['#FFB000','#648FFF','#785EF0', |
|
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] |
|
|
|
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]]) |
|
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]]) |
|
|
|
|
|
from matplotlib.pyplot import text |
|
import inflect |
|
from scipy.stats import percentileofscore |
|
p = inflect.engine() |
|
|
|
|
|
|
|
|
|
def server(input,output,session): |
|
|
|
|
|
@output |
|
@render.plot(alt="hex_plot") |
|
@reactive.event(input.go, ignore_none=False) |
|
def hex_plot(): |
|
|
|
if input.batter_id() is "": |
|
fig = plt.figure(figsize=(12, 12)) |
|
fig.text(s='Please Select a Batter',x=0.5,y=0.5) |
|
return |
|
|
|
batter_select_id = int(input.batter_id()) |
|
|
|
quant = int(input.quant())/100 |
|
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] |
|
|
|
df_batter = df_batter_og[df_batter_og['launch_speed'] >= df_batter_og['launch_speed'].quantile(quant)] |
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
y_b = np.arange(df_batter['launch_angle'].median()-df_batter['launch_angle'].std(), |
|
df_batter['launch_angle'].median()+df_batter['launch_angle'].std(),1 ) |
|
|
|
z_b = np.arange(df_batter['h_la'].median()-df_batter['h_la'].std(), |
|
df_batter['h_la'].median()+df_batter['h_la'].std(),1 ) |
|
|
|
|
|
Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij') |
|
|
|
|
|
y_flat_b = Y_b.flatten() |
|
z_flat_b = Z_b.flatten() |
|
|
|
|
|
df_batter_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)}) |
|
|
|
|
|
|
|
from matplotlib.gridspec import GridSpec |
|
|
|
fig = plt.figure(figsize=(12,12)) |
|
gs = GridSpec(4, 3, height_ratios=[0.5,10,1.5,0.2], width_ratios=[0.05,0.9,0.05]) |
|
|
|
axheader = fig.add_subplot(gs[0, :]) |
|
ax10 = fig.add_subplot(gs[1, 0]) |
|
ax = fig.add_subplot(gs[1, 1]) |
|
ax12 = fig.add_subplot(gs[1, 2]) |
|
ax2_ = fig.add_subplot(gs[2, :]) |
|
axfooter1 = fig.add_subplot(gs[-1, :]) |
|
|
|
axheader.axis('off') |
|
ax10.axis('off') |
|
ax12.axis('off') |
|
ax2_.axis('off') |
|
axfooter1.axis('off') |
|
|
|
|
|
|
|
extents = [-45,45,-30,60] |
|
|
|
def hexLines(a=None,i=None,off=[0,0]): |
|
'''regular hexagon segment lines as `(xy1,xy2)` in clockwise |
|
order with points in line sorted top to bottom |
|
for irregular hexagon pass both `a` (vertical) and `i` (horizontal)''' |
|
if a is None: a = 2 / np.sqrt(3) * i; |
|
if i is None: i = np.sqrt(3) / 2 * a; |
|
h = a / 2 |
|
xy = np.array([ [ [ 0, a], [ i, h] ], |
|
[ [ i, h], [ i,-h] ], |
|
[ [ i,-h], [ 0,-a] ], |
|
[ [-i,-h], [ 0,-a] ], |
|
[ [-i, h], [-i,-h] ], |
|
[ [ 0, a], [-i, h] ] |
|
]) |
|
return xy+off; |
|
|
|
|
|
h = ax.hexbin(x=df_batter_base['h_la'], |
|
y=df_batter_base['launch_angle'], |
|
gridsize=25, |
|
edgecolors='k', |
|
extent=extents,mincnt=1,lw=2,zorder=-3,) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], |
|
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], |
|
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], |
|
gridsize=25, |
|
vmin=0, |
|
vmax=4, |
|
cmap=cmap_hue2, |
|
extent=extents,zorder=-3) |
|
|
|
|
|
|
|
counts = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], |
|
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], |
|
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], |
|
gridsize=25, |
|
vmin=0, |
|
vmax=4, |
|
cmap=cmap_hue2, |
|
extent=extents).get_array() |
|
|
|
bin_centers = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], |
|
y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], |
|
C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], |
|
gridsize=25, |
|
vmin=0, |
|
vmax=4, |
|
cmap=cmap_hue2, |
|
extent=extents).get_offsets() |
|
|
|
|
|
for count, (x, y) in zip(counts, bin_centers): |
|
if count >= 1: |
|
ax.text(x, y, f'{count:.1f}', color='black', ha='center', va='center',fontsize=7) |
|
|
|
|
|
|
|
|
|
verts = h.get_offsets() |
|
cnts = h.get_array() |
|
highl = verts[cnts > .5*cnts.max()] |
|
|
|
|
|
a = ((verts[0,1]-verts[1,1])/3).round(6) |
|
i = ((verts[1:,0]-verts[:-1,0])/2).round(6) |
|
i = i[i>0][0] |
|
lines = np.concatenate([hexLines(a,i,off) for off in highl]) |
|
|
|
|
|
uls,c = np.unique(lines.round(4),axis=0,return_counts=True) |
|
for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[1],zorder=100) |
|
|
|
|
|
|
|
for hc in highl: |
|
hx = hc[0] + np.array([0, i, i, 0, -i, -i]) |
|
hy = hc[1] + np.array([a, a/2, -a/2, -a, -a/2, a/2]) |
|
ax.fill(hx, hy, color=colour_palette[1], alpha=0.15, edgecolor=None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
axheader.text(s=f"{df_batter['batter_name'].values[0]} - {int(quant*100)}th% EV and Greater Batted Ball Tendencies",x=0.5,y=0.2,fontsize=20,ha='center',va='bottom') |
|
axheader.text(s=f"2023 Season",x=0.5,y=-0.1,fontsize=14,ha='center',va='top') |
|
|
|
ax.set_xlabel(f"Horizontal Spray Angle (°)",fontsize=12) |
|
ax.set_ylabel(f"Vertical Launch Angle (°)",fontsize=12) |
|
|
|
ax2_.text(x=0.5, |
|
y=0.0, |
|
|
|
s="Notes:\n" \ |
|
f"- {int(quant*100)}th% EV and Greater BBE is defined as a batter's top {100 - int(quant*100)}% hardest hit BBE\n" \ |
|
f"- Colour Scale and Number Labels Represents the Expected Total Bases for a batter's range of Best Speeds\n" \ |
|
f"- Shaded Area Represents the 2-D Region bounded by ±1σ Launch Angle and Horizontal Spray Angle on batter's Best Speed BBE\n"\ |
|
f"- {df_batter['batter_name'].values[0]} {int(quant*100)}th% EV and Greater BBE Range from {df_batter['launch_speed'].min():.0f} to {df_batter['launch_speed'].max():.0f} mph ({len(df_batter)} BBE)\n"\ |
|
f"- Positive Horizontal Spray Angle Represents a BBE hit in same direction as batter handedness (i.e. Pulled)" , |
|
|
|
fontsize=11, |
|
fontstyle='oblique', |
|
va='bottom', |
|
ha='center', |
|
bbox=dict(facecolor='white', edgecolor='black'),ma='left') |
|
|
|
axfooter1.text(0.05, 0.5, "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12) |
|
axfooter1.text(0.95, 0.5, "Data: MLB",ha='right', va='bottom',fontsize=12) |
|
|
|
if df_batter['batter_hand'].values[0] == 'R': |
|
ax.invert_xaxis() |
|
ax.grid(False) |
|
ax.axis('equal') |
|
|
|
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025) |
|
|
|
|
|
|
|
|
|
@output |
|
@render.plot(alt="roll_plot") |
|
@reactive.event(input.go, ignore_none=False) |
|
def roll_plot(): |
|
|
|
|
|
|
|
if input.batter_id() is "": |
|
fig = plt.figure(figsize=(12, 12)) |
|
fig.text(s='Please Select a Batter',x=0.5,y=0.5) |
|
return |
|
|
|
|
|
|
|
batter_select_id = int(input.batter_id()) |
|
|
|
df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] |
|
batter_select_name = df_batter_og['batter_name'].values[0] |
|
win = min(int(input.rolling_window()),len(df_batter_og)) |
|
df_2023_output = df_2023_output_copy[df_2023_output_copy['bip'] >= win] |
|
sns.set_theme(style="whitegrid", palette="pastel") |
|
|
|
|
|
from matplotlib.gridspec import GridSpec |
|
|
|
fig = plt.figure(figsize=(12,12)) |
|
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01]) |
|
|
|
axheader = fig.add_subplot(gs[0, :]) |
|
ax10 = fig.add_subplot(gs[1, 0]) |
|
ax = fig.add_subplot(gs[1, 1]) |
|
ax12 = fig.add_subplot(gs[1, 2]) |
|
axfooter1 = fig.add_subplot(gs[-1, :]) |
|
|
|
axheader.axis('off') |
|
ax10.axis('off') |
|
ax12.axis('off') |
|
axfooter1.axis('off') |
|
|
|
|
|
sns.lineplot( x= range(win,len(df_batter_og.y_pred.rolling(window=win).mean())+1), |
|
y= df_batter_og.y_pred.rolling(window=win).mean().dropna(), |
|
color=colour_palette[0],linewidth=2,ax=ax) |
|
|
|
ax.hlines(y=df_batter_og.y_pred.mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[0],linestyle='--', |
|
label=f'{batter_select_name} Average: {df_batter_og.y_pred.mean():.3f} xSLGCON ({p.ordinal(int(np.around(percentileofscore(df_2023_output["xslgcon"],df_batter_og.y_pred.mean(), kind="strict"))))} Percentile)') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax.hlines(y=df_2023_bip_train['y_pred'].mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[1],linestyle='-.',alpha=1, |
|
label = f'MLB Average: {df_2023_bip_train["y_pred"].mean():.3f} xSLGCON') |
|
|
|
ax.legend() |
|
|
|
hard_hit_dates = [df_2023_output['xslgcon'].quantile(0.9), |
|
df_2023_output['xslgcon'].quantile(0.75), |
|
df_2023_output['xslgcon'].quantile(0.25), |
|
df_2023_output['xslgcon'].quantile(0.1)] |
|
|
|
|
|
|
|
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.9),xmin=win,xmax=len(df_batter_og),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1) |
|
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.75),xmin=win,xmax=len(df_batter_og),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1) |
|
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.25),xmin=win,xmax=len(df_batter_og),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1) |
|
ax.hlines(y=df_2023_output['xslgcon'].quantile(0.1),xmin=win,xmax=len(df_batter_og),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1) |
|
|
|
hard_hit_text = ['90th %','75th %','25th %','10th %'] |
|
for i, x in enumerate(hard_hit_dates): |
|
ax.text(min(win+win/50,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left', |
|
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax.set_xlim(win,len(df_batter_og)) |
|
|
|
|
|
ax.set_yticks([0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]) |
|
|
|
ax.set_xlabel('Balls In Play') |
|
ax.set_ylabel('Expected Total Bases per Ball In Play (xSLGCON)') |
|
|
|
from matplotlib.ticker import FormatStrFormatter |
|
|
|
ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) |
|
|
|
axheader.text(s=f'{batter_select_name} - MLB - {win} Rolling BIP Expected Slugging on Contact (xSLGCON)',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14) |
|
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12) |
|
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12) |
|
|
|
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02) |
|
|
|
damage = App(ui.page_fluid( |
|
ui.tags.base(href=base_url), |
|
ui.tags.div( |
|
{"style": "width:95%;margin: 0 auto;max-width: 1600px;"}, |
|
ui.tags.style( |
|
""" |
|
h4 { |
|
margin-top: 1em;font-size:35px; |
|
} |
|
h2{ |
|
font-size:25px; |
|
} |
|
""" |
|
), |
|
shinyswatch.theme.simplex(), |
|
ui.tags.h4("TJStats"), |
|
ui.tags.i("Baseball Analytics and Visualizations"), |
|
ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""), |
|
ui.navset_tab( |
|
ui.nav_control( |
|
ui.a( |
|
"Home", |
|
href="home/" |
|
), |
|
), |
|
ui.nav_menu( |
|
"Batter Charts", |
|
ui.nav_control( |
|
ui.a( |
|
"Batting Rolling", |
|
href="rolling_batter/" |
|
), |
|
ui.a( |
|
"Spray", |
|
href="spray/" |
|
), |
|
ui.a( |
|
"Decision Value", |
|
href="decision_value/" |
|
), |
|
ui.a( |
|
"Damage Model", |
|
href="damage_model/" |
|
), |
|
ui.a( |
|
"Batter Scatter", |
|
href="batter_scatter/" |
|
), |
|
|
|
|
|
|
|
|
|
ui.a( |
|
"Statcast Compare", |
|
href="statcast_compare/" |
|
) |
|
), |
|
), |
|
ui.nav_menu( |
|
"Pitcher Charts", |
|
ui.nav_control( |
|
ui.a( |
|
"Pitcher Rolling", |
|
href="rolling_pitcher/" |
|
), |
|
ui.a( |
|
"Pitcher Summary", |
|
href="pitching_summary_graphic_new/" |
|
), |
|
ui.a( |
|
"Pitcher Scatter", |
|
href="pitcher_scatter/" |
|
) |
|
), |
|
)),ui.row( |
|
ui.layout_sidebar( |
|
|
|
ui.panel_sidebar( |
|
ui.input_select("batter_id", |
|
"Select Batter", |
|
batter_dict, |
|
width=1, |
|
size=1, |
|
selectize=True), |
|
ui.input_numeric("quant", |
|
"Select Percentile", |
|
value=50, |
|
min=0,max=100), |
|
ui.input_numeric("rolling_window", |
|
"Select Rolling Window", |
|
value=50, |
|
min=1), |
|
ui.input_action_button("go", "Generate",class_="btn-primary")), |
|
|
|
ui.panel_main( |
|
ui.navset_tab( |
|
|
|
ui.nav("Damage Hex", |
|
ui.output_plot('hex_plot', |
|
width='1200px', |
|
height='1200px')), |
|
ui.nav("Damage Roll", |
|
ui.output_plot('roll_plot', |
|
width='1200px', |
|
height='1200px')) |
|
)) |
|
)),)),server) |