nerozhao commited on
Commit
31efe87
1 Parent(s): 7ce0359

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -95
app.py CHANGED
@@ -7,8 +7,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
7
  # Load model and tokenizer
8
  model_name = "Salesforce/xLAM-1b-fc-r"
9
 
10
- title = f"Eval Model: {model_name}"
11
- description = """"""
12
 
13
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
14
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -16,120 +15,33 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
16
  # Set random seed for reproducibility
17
  torch.random.manual_seed(0)
18
 
19
- # Task and format instructions
20
- task_instruction = """
21
- Based on the previous context and API request history, generate an API request or a response as an AI assistant.""".strip()
22
-
23
- format_instruction = """
24
- The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make
25
- tool_calls an empty list "[]".
26
- ```
27
- {"thought": "the thought process, or an empty string", "tool_calls": [{"name": "api_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}]}
28
- ```
29
- """.strip()
30
-
31
- # Example tools and query
32
- example_tools = json.dumps([
33
- {
34
- "name": "get_weather",
35
- "description": "Get the current weather for a location",
36
- "parameters": {
37
- "type": "object",
38
- "properties": {
39
- "location": {
40
- "type": "string",
41
- "description": "The city and state, e.g. San Francisco, New York"
42
- },
43
- "unit": {
44
- "type": "string",
45
- "enum": ["celsius", "fahrenheit"],
46
- "description": "The unit of temperature to return"
47
- }
48
- },
49
- "required": ["location"]
50
- }
51
- },
52
- {
53
- "name": "search",
54
- "description": "Search for information on the internet",
55
- "parameters": {
56
- "type": "object",
57
- "properties": {
58
- "query": {
59
- "type": "string",
60
- "description": "The search query, e.g. 'latest news on AI'"
61
- }
62
- },
63
- "required": ["query"]
64
- }
65
- }
66
- ], indent=2)
67
-
68
- example_query = "What's the weather like in New York in fahrenheit?"
69
-
70
- def convert_to_xlam_tool(tools):
71
- if isinstance(tools, dict):
72
- return {
73
- "name": tools["name"],
74
- "description": tools["description"],
75
- "parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
76
- }
77
- elif isinstance(tools, list):
78
- return [convert_to_xlam_tool(tool) for tool in tools]
79
- else:
80
- return tools
81
-
82
- def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str):
83
- prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
84
- prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n"
85
- prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
86
- prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
87
- return prompt
88
-
89
  @spaces.GPU
90
- def generate_response(tools_input, query):
91
- try:
92
- tools = json.loads(tools_input)
93
- except json.JSONDecodeError:
94
- return "Error: Invalid JSON format for tools input."
95
-
96
- xlam_format_tools = convert_to_xlam_tool(tools)
97
- content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query)
98
-
99
  messages = [
100
  {'role': 'user', 'content': content}
101
  ]
102
 
103
  inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
104
  outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
105
- agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
106
 
107
- return agent_action
108
 
109
  # Gradio interface
110
  with gr.Blocks() as demo:
111
  gr.Markdown(title)
112
- gr.Markdown(description)
113
 
114
  with gr.Row():
115
  with gr.Column():
116
- tools_input = gr.Code(
117
- label="Available Tools (JSON format)",
118
- lines=20,
119
- value=example_tools,
120
- language='json'
121
- )
122
  query_input = gr.Textbox(
123
- label="User Query",
124
- lines=2,
125
- value=example_query
126
  )
127
  submit_button = gr.Button("Generate Response")
128
 
129
  with gr.Column():
130
- output = gr.Code(label="🎬 xLam :", lines=10, language="json")
131
 
132
- submit_button.click(generate_response, inputs=[tools_input, query_input], outputs=output)
133
 
134
  if __name__ == "__main__":
135
  demo.launch()
 
7
  # Load model and tokenizer
8
  model_name = "Salesforce/xLAM-1b-fc-r"
9
 
10
+ title = f"# Eval Model: {model_name}"
 
11
 
12
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
15
  # Set random seed for reproducibility
16
  torch.random.manual_seed(0)
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  @spaces.GPU
19
+ def generate_response(query):
 
 
 
 
 
 
 
 
20
  messages = [
21
  {'role': 'user', 'content': content}
22
  ]
23
 
24
  inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
25
  outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
 
26
 
27
+ return outputs
28
 
29
  # Gradio interface
30
  with gr.Blocks() as demo:
31
  gr.Markdown(title)
 
32
 
33
  with gr.Row():
34
  with gr.Column():
 
 
 
 
 
 
35
  query_input = gr.Textbox(
36
+ label="User Content",
37
+ lines=20
 
38
  )
39
  submit_button = gr.Button("Generate Response")
40
 
41
  with gr.Column():
42
+ output = gr.Code(label="Response :", lines=10, language="json")
43
 
44
+ submit_button.click(generate_response, inputs=[query_input], outputs=output)
45
 
46
  if __name__ == "__main__":
47
  demo.launch()