Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,40 @@
|
|
1 |
import re
|
2 |
import json
|
3 |
|
|
|
|
|
4 |
import streamlit
|
5 |
import spacy_streamlit
|
6 |
import spacy
|
7 |
from lxml import etree
|
8 |
import pandas as pd
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
CONFIGURATION = json.loads(json_file.read())
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
# TITLE APP
|
21 |
streamlit.title("NER4Archives visualizer")
|
22 |
-
streamlit.sidebar.title("NER4Archives visualizer")
|
23 |
-
streamlit.sidebar.write("## Motivation")
|
24 |
-
streamlit.sidebar.markdown("""<div style="text-align: justify;">
|
25 |
-
<p>This application is a proof-of-concept to apply and evaluate text classification task (also called Named-Entity Recognition) on
|
26 |
-
XML <a href="https://www.loc.gov/ead/" target="_blank">EAD</a> <a href="https://fr.wikipedia.org/wiki/Instrument_de_recherche" target="_blank">finding aids</a> and evaluate NER predictions.</p>
|
27 |
|
28 |
-
<p>In the context of the <a href="https://github.com/NER4Archives-project" target="_blank">NER4Archives project</a> (INRIA-ALMAnaCH/Archives nationales), the goal is to train NER models on annotated dataset
|
29 |
-
extracted from XML EAD finding aids and test it on new data.<p>
|
30 |
|
31 |
-
<p>Most of the models available here are trained with the NLP <a href="https://spacy.io/" target="_blank">spaCy</a>
|
32 |
-
framework and are available on the <a href="https://huggingface.co/ner4archives" target="_blank">HF organisation hub</a>.
|
33 |
-
Other models may be added in the future.</p>
|
34 |
-
|
35 |
-
<p>The project also includes a downstream entity linking task. The <a href="https://github.com/Lucaterre/spacyfishing" target="_blank">SpaCy fishing</a> extension (based on <a href="https://github.com/kermitt2/entity-fishing" target="_blank">entity-fishing</a>) is used here to support this purpose.</p>
|
36 |
-
|
37 |
-
NER4Archives - 2022</div>
|
38 |
-
""", unsafe_allow_html=True)
|
39 |
-
|
40 |
-
scol1, scol2 = streamlit.sidebar.columns(2)
|
41 |
-
scol1.image("./assets/an.png", width=170)
|
42 |
-
scol2.image("./assets/almanach_rouge-inria.png", width=100)
|
43 |
-
|
44 |
-
flag_file = False
|
45 |
-
|
46 |
-
# 1. User provides a XML EAD
|
47 |
-
streamlit.write("## π Input XML EAD:")
|
48 |
-
filename = streamlit.file_uploader("Upload an XML EAD", type="xml")
|
49 |
-
streamlit.markdown("or use an XML EAD provided in [`samples/`](https://huggingface.co/spaces/ner4archives/ner4archives-NEL-vizualizer-app/blob/main/samples/) directory")
|
50 |
-
data = ""
|
51 |
-
flag_model = False
|
52 |
-
|
53 |
-
if filename is not None:
|
54 |
-
data = filename.getvalue().decode("utf-8").encode("utf-8")
|
55 |
-
if len(data) > 0:
|
56 |
-
flag_file = True
|
57 |
def ead_strategy(tree):
|
58 |
-
# create a container for sentences and dids
|
59 |
-
# elements
|
60 |
sentences = []
|
61 |
container_dids = []
|
62 |
# get the <dsc> level
|
@@ -78,132 +56,186 @@ def ead_strategy(tree):
|
|
78 |
# assert len(sentences) == len(container_dids)
|
79 |
return container_dids, sentences
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
if flag_file:
|
85 |
-
col1, col2 = streamlit.columns(2)
|
86 |
-
col1.write("## ποΈ XML tree view:")
|
87 |
-
col2.write("## ποΈ Plain text view:")
|
88 |
-
parser = etree.XMLParser(ns_clean=True, recover=True, encoding='utf-8')
|
89 |
tree = etree.fromstring(data, parser=parser)
|
90 |
xml = etree.tostring(tree, pretty_print=True, encoding="utf-8").decode("utf-8")
|
91 |
-
col1.text_area("", value=xml, height=500, disabled=True)
|
92 |
dids, sentences = ead_strategy(tree)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
plain = "\n".join(sentences)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
else:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import json
|
3 |
|
4 |
+
import requests
|
5 |
+
|
6 |
import streamlit
|
7 |
import spacy_streamlit
|
8 |
import spacy
|
9 |
from lxml import etree
|
10 |
import pandas as pd
|
11 |
|
12 |
+
# Constants
|
13 |
+
CONFIG_FILE = "config.json"
|
14 |
+
ASSETS_DIR = "./assets"
|
15 |
+
XML_PARSER_CONFIG = {'ns_clean': True, 'recover': True, 'encoding': 'utf-8'}
|
16 |
+
ENTITY_COLORS = {
|
17 |
+
"EVENT": "#ec7063",
|
18 |
+
"LOCATION": "#45b39d",
|
19 |
+
"ORGANISATION": "#f39c12",
|
20 |
+
"PERSON": "#3498db",
|
21 |
+
"TITLE": "#a569bd ",
|
22 |
+
"LOC": "#45b39d",
|
23 |
+
"MISC": "#ec7063",
|
24 |
+
"ORG": "#f39c12",
|
25 |
+
"PER": "#3498db"
|
26 |
+
}
|
27 |
+
|
28 |
+
# Read configuration
|
29 |
+
with open(CONFIG_FILE, mode="r") as json_file:
|
30 |
CONFIGURATION = json.loads(json_file.read())
|
31 |
|
32 |
+
# Set up Streamlit page
|
33 |
+
streamlit.set_page_config(layout="wide")
|
|
|
34 |
streamlit.title("NER4Archives visualizer")
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def ead_strategy(tree):
|
|
|
|
|
38 |
sentences = []
|
39 |
container_dids = []
|
40 |
# get the <dsc> level
|
|
|
56 |
# assert len(sentences) == len(container_dids)
|
57 |
return container_dids, sentences
|
58 |
|
59 |
+
|
60 |
+
def process_xml(data):
|
61 |
+
parser = etree.XMLParser(**XML_PARSER_CONFIG)
|
|
|
|
|
|
|
|
|
|
|
62 |
tree = etree.fromstring(data, parser=parser)
|
63 |
xml = etree.tostring(tree, pretty_print=True, encoding="utf-8").decode("utf-8")
|
|
|
64 |
dids, sentences = ead_strategy(tree)
|
65 |
+
return xml, dids, sentences
|
66 |
+
|
67 |
+
|
68 |
+
def is_entity_fishing_online():
|
69 |
+
try:
|
70 |
+
response = requests.get("/".join(CONFIGURATION["ef_endpoint"].split("/")[:-1]))
|
71 |
+
if response.status_code == 200:
|
72 |
+
return True
|
73 |
+
else:
|
74 |
+
return False
|
75 |
+
except:
|
76 |
+
return False
|
77 |
+
|
78 |
+
|
79 |
+
def setup_sidebar():
|
80 |
+
streamlit.sidebar.title("NER4Archives visualizer")
|
81 |
+
streamlit.sidebar.write("## Motivation")
|
82 |
+
streamlit.sidebar.markdown("""<div style="text-align: justify;">
|
83 |
+
<p>This application is a proof-of-concept to apply and evaluate text classification task (also called Named-Entity Recognition) on
|
84 |
+
XML <a href="https://www.loc.gov/ead/" target="_blank">EAD</a> <a href="https://fr.wikipedia.org/wiki/Instrument_de_recherche" target="_blank">finding aids</a> and evaluate NER predictions.</p>
|
85 |
+
<p>In the context of the <a href="https://github.com/NER4Archives-project" target="_blank">NER4Archives project</a> (INRIA-ALMAnaCH/Archives nationales), the goal is to train NER models on annotated dataset
|
86 |
+
extracted from XML EAD finding aids and test it on new data.<p>
|
87 |
+
<p>Most of the models available here are trained with the NLP <a href="https://spacy.io/" target="_blank">spaCy</a>
|
88 |
+
framework and are available on the <a href="https://huggingface.co/ner4archives" target="_blank">HF organisation hub</a>.
|
89 |
+
Other models may be added in the future.</p>
|
90 |
+
<p>The project also includes a downstream entity linking task. The <a href="https://github.com/Lucaterre/spacyfishing" target="_blank">SpaCy fishing</a> extension (based on <a href="https://github.com/kermitt2/entity-fishing" target="_blank">entity-fishing</a>) is used here to support this purpose.</p>
|
91 |
+
NER4Archives - 2022/2023</div>
|
92 |
+
""", unsafe_allow_html=True)
|
93 |
+
scol1, scol2 = streamlit.sidebar.columns(2)
|
94 |
+
scol1.image(f"{ASSETS_DIR}/an.png", width=170)
|
95 |
+
scol2.image(f"{ASSETS_DIR}/almanach_rouge-inria.png", width=100)
|
96 |
+
|
97 |
+
|
98 |
+
def main():
|
99 |
+
setup_sidebar()
|
100 |
+
flag_file = False
|
101 |
+
flag_model = False
|
102 |
+
data = ""
|
103 |
+
model = ""
|
104 |
+
linking = True
|
105 |
+
entities = []
|
106 |
+
# 1. User provides a XML EAD
|
107 |
+
streamlit.write("## π Input XML EAD:")
|
108 |
+
filename = streamlit.file_uploader("Upload an XML EAD (format .xml)", type="xml", label_visibility="collapsed")
|
109 |
+
streamlit.markdown(
|
110 |
+
"or use an XML EAD provided in [`samples/`](https://huggingface.co/spaces/ner4archives/ner4archives-NEL-vizualizer-app/blob/main/samples/) directory")
|
111 |
+
|
112 |
+
if filename is not None:
|
113 |
+
data = filename.getvalue().decode("utf-8").encode("utf-8")
|
114 |
+
if len(data) > 0:
|
115 |
+
flag_file = True
|
116 |
+
|
117 |
+
if flag_file:
|
118 |
+
col1, col2 = streamlit.columns(2)
|
119 |
+
col1.write("## ποΈ XML tree view:")
|
120 |
+
col2.write("## ποΈ Plain text view:")
|
121 |
+
xml, _, sentences = process_xml(data)
|
122 |
+
col1.text_area("XML Tree View (read-only)", value=xml, height=500, disabled=True)
|
123 |
plain = "\n".join(sentences)
|
124 |
+
col2.text_area("Plain Text View (read-only)", value=plain, height=500, disabled=True)
|
125 |
+
flag_view = True
|
126 |
+
|
127 |
+
if flag_view:
|
128 |
+
streamlit.write("## βοΈ Configure NER pipeline and options:")
|
129 |
+
streamlit.write("β οΈ Using Bert based model and/or linking may increase considerably the processing time.")
|
130 |
+
models = []
|
131 |
+
for pipe in spacy.info()["pipelines"]:
|
132 |
+
models.append(pipe)
|
133 |
+
option = streamlit.selectbox(
|
134 |
+
'Choose a NER model you want to apply in the list: ',
|
135 |
+
models)
|
136 |
+
model = option
|
137 |
+
if model != "":
|
138 |
+
flag_model = True
|
139 |
+
|
140 |
+
gpu = streamlit.checkbox('Check to use GPU (if available)', value=False)
|
141 |
+
gpu_icon = "β"
|
142 |
+
if gpu:
|
143 |
+
spacy.prefer_gpu()
|
144 |
+
gpu_icon = "β
οΈ"
|
145 |
+
else:
|
146 |
+
spacy.require_cpu()
|
147 |
+
|
148 |
+
if is_entity_fishing_online():
|
149 |
+
streamlit.write("Entity-fishing server status: π’ (you can use linking feature)")
|
150 |
+
linking = streamlit.checkbox('Check to apply named entity linking (entity-fishing component)',
|
151 |
+
value=False)
|
152 |
+
linkingicon = "β
οΈ"
|
153 |
+
if linking is False:
|
154 |
+
linkingicon = "β"
|
155 |
else:
|
156 |
+
streamlit.write("Entity-fishing server status: π΄ (you can't use linking feature)")
|
157 |
+
linking = False
|
158 |
+
linkingicon = "β"
|
159 |
+
streamlit.write("#### Actual Parameters:")
|
160 |
+
streamlit.write(f'- NER model selected: {option}\n - Linking activated: {linkingicon} - GPU activated: {gpu_icon}')
|
161 |
+
|
162 |
+
# Launch NER process:
|
163 |
+
if flag_model:
|
164 |
+
if streamlit.button('Launch'):
|
165 |
+
plain = "\n".join(sentences)
|
166 |
+
with streamlit.spinner('Initialize NER...'):
|
167 |
+
nlp = spacy.load(model)
|
168 |
+
nlp.max_length = 5000000
|
169 |
+
if linking:
|
170 |
+
nlp.add_pipe('entityfishing',
|
171 |
+
config={"language": "fr", "api_ef_base": CONFIGURATION['ef_endpoint']})
|
172 |
+
|
173 |
+
with streamlit.spinner('NER processing...'):
|
174 |
+
if linking:
|
175 |
+
start_sentence = 0
|
176 |
+
for doc in nlp.pipe(sentences):
|
177 |
+
end_sentence = start_sentence + len(doc.text) + 1
|
178 |
+
for ent in doc.ents:
|
179 |
+
start_tok = start_sentence + ent.start_char
|
180 |
+
end_tok = start_tok + len(ent.text)
|
181 |
+
entities.append((
|
182 |
+
start_tok,
|
183 |
+
end_tok,
|
184 |
+
ent.text,
|
185 |
+
ent.label_,
|
186 |
+
ent._.kb_qid,
|
187 |
+
ent._.url_wikidata,
|
188 |
+
ent._.nerd_score
|
189 |
+
))
|
190 |
+
start_sentence = end_sentence
|
191 |
+
else:
|
192 |
+
start_sentence = 0
|
193 |
+
for doc in nlp.pipe(sentences):
|
194 |
+
end_sentence = start_sentence + len(doc.text) + 1
|
195 |
+
for ent in doc.ents:
|
196 |
+
start_tok = start_sentence + ent.start_char
|
197 |
+
end_tok = start_tok + len(ent.text)
|
198 |
+
entities.append((start_tok,
|
199 |
+
end_tok,
|
200 |
+
ent.text,
|
201 |
+
ent.label_,
|
202 |
+
"",
|
203 |
+
"",
|
204 |
+
""
|
205 |
+
))
|
206 |
+
start_sentence = end_sentence
|
207 |
+
|
208 |
+
streamlit.success('π NER applied with success!')
|
209 |
+
|
210 |
+
df = pd.DataFrame(entities, columns=['START',
|
211 |
+
'END',
|
212 |
+
'MENTION',
|
213 |
+
'NER LABEL',
|
214 |
+
'QID',
|
215 |
+
'WIKIDATA RESSOURCE (wikidata disambiguation)',
|
216 |
+
'LINKING SCORE'
|
217 |
+
])
|
218 |
+
df[['START', 'END']] = df[['START', 'END']].astype(int)
|
219 |
+
streamlit.write("## π Explore named entities in table: ")
|
220 |
+
streamlit.write(df)
|
221 |
+
|
222 |
+
streamlit.write("## π Explore named entities in text: ")
|
223 |
+
spacy_streamlit.visualize_ner(
|
224 |
+
{"text": plain,
|
225 |
+
"ents": [{"start": ent[0],
|
226 |
+
"end": ent[1],
|
227 |
+
"label": ent[3],
|
228 |
+
"kb_id": ent[4] if linking else "",
|
229 |
+
"kb_url": ent[5] if linking else ""
|
230 |
+
} for ent in entities]},
|
231 |
+
labels=["EVENT", "LOCATION", "ORGANISATION", "PERSON", "TITLE", 'LOC', 'MISC', 'ORG', 'PER'],
|
232 |
+
show_table=False,
|
233 |
+
manual=True,
|
234 |
+
title="",
|
235 |
+
displacy_options={
|
236 |
+
"colors": ENTITY_COLORS
|
237 |
+
})
|
238 |
+
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
main()
|