NeonBohdan commited on
Commit
63a5c24
1 Parent(s): 8878822

Use OpenAI NeonLLM

Browse files
Files changed (1) hide show
  1. app.py +27 -41
app.py CHANGED
@@ -1,60 +1,46 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
59
  )
60
 
 
1
+ import os
2
+ from typing import List, Tuple
3
+
4
  import gradio as gr
5
+ from openai import OpenAI
6
+
7
+
8
+
9
+ client = OpenAI(
10
+ base_url=f"{os.environ['BASE_URL']}/v1",
11
+ api_key=os.environ["API_KEY"],
12
+ )
13
 
 
 
 
 
14
 
15
 
16
  def respond(
17
  message,
18
+ history: List[Tuple[str, str]],
 
19
  max_tokens,
 
 
20
  ):
21
+ messages = []
 
 
 
 
 
 
22
 
23
  messages.append({"role": "user", "content": message})
24
 
25
+ completion = client.chat.completions.create(
26
+ model="neongeckocom/NeonLLM",
27
+ messages=messages,
 
28
  max_tokens=max_tokens,
29
+ temperature=0,
30
+ extra_body={
31
+ "repetition_penalty": 1.05,
32
+ "use_beam_search": True,
33
+ "best_of": 5,
34
+ },
35
+ )
36
+ response = completion.choices[0].message.content
37
+ return response
38
+
39
+
 
40
  demo = gr.ChatInterface(
41
  respond,
42
  additional_inputs=[
 
43
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
 
 
 
 
 
 
 
 
44
  ],
45
  )
46