Spaces:
Sleeping
Sleeping
neoguojing
commited on
Commit
•
494b300
1
Parent(s):
ac510cd
uP
Browse files- app.py +152 -1
- embedding.py +69 -0
- requirements.txt +7 -1
- retriever.py +150 -0
app.py
CHANGED
@@ -6,7 +6,8 @@ from inference import ModelFactory
|
|
6 |
from face import FaceAlgo
|
7 |
from sam_everything import SamAnything
|
8 |
from ocr import do_ocr
|
9 |
-
|
|
|
10 |
|
11 |
components = {}
|
12 |
|
@@ -125,10 +126,55 @@ def create_ui():
|
|
125 |
with gr.Row():
|
126 |
with gr.Group():
|
127 |
components["ocr_json_output"] = gr.JSON(label="推理结果")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
create_event_handlers()
|
|
|
130 |
return demo
|
131 |
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def create_event_handlers():
|
134 |
params["algo_type"] = gr.State("全景分割")
|
@@ -172,6 +218,24 @@ def create_event_handlers():
|
|
172 |
do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output")
|
173 |
)
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
def do_refernce(algo_type,input_image):
|
176 |
# def do_refernce():
|
177 |
print("input image",input_image)
|
@@ -261,6 +325,93 @@ def point_to_mask(pil_image):
|
|
261 |
points_array_reshaped = points_array.reshape(-1, 2)
|
262 |
return points_array_reshaped
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
if __name__ == "__main__":
|
265 |
demo = create_ui()
|
266 |
# demo.launch(server_name="10.151.124.137")
|
|
|
6 |
from face import FaceAlgo
|
7 |
from sam_everything import SamAnything
|
8 |
from ocr import do_ocr
|
9 |
+
from retriever import knowledgeBase
|
10 |
+
import time
|
11 |
|
12 |
components = {}
|
13 |
|
|
|
126 |
with gr.Row():
|
127 |
with gr.Group():
|
128 |
components["ocr_json_output"] = gr.JSON(label="推理结果")
|
129 |
+
with gr.Tab("知识库"):
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column(scale=1):
|
132 |
+
with gr.Group():
|
133 |
+
components["db_view"] = gr.Dataframe(
|
134 |
+
headers=["列表"],
|
135 |
+
datatype=["str"],
|
136 |
+
row_count=8,
|
137 |
+
col_count=(1, "fixed"),
|
138 |
+
interactive=False
|
139 |
+
)
|
140 |
+
with gr.Column(scale=2):
|
141 |
+
with gr.Group():
|
142 |
+
components["db_name"] = gr.Textbox(label="名称", info="请输入库名称", lines=1, value="")
|
143 |
+
components["file_upload"] = gr.File(elem_id='file_upload',file_count='multiple',label='文档上传', file_types=[".pdf", ".doc", '.docx', '.json', '.csv'])
|
144 |
+
components["db_submit_btn"] = gr.Button(value="提交")
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column(scale=2):
|
147 |
+
components["db_input"] = gr.Textbox(label="关键词", lines=1, value="")
|
148 |
+
|
149 |
+
with gr.Column(scale=1):
|
150 |
+
components["db_test_select"] = gr.Dropdown(
|
151 |
+
choices=knowledgeBase.get_bases(),value=None,multiselect=True, label="知识库选择"
|
152 |
+
)
|
153 |
+
components["dbtest_submit_btn"] = gr.Button(value="检索")
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Group():
|
156 |
+
components["db_search_result"] = gr.JSON(label="检索结果")
|
157 |
|
158 |
+
with gr.Tab("问答"):
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column():
|
161 |
+
with gr.Group():
|
162 |
+
components["chatbot"] = gr.Chatbot(
|
163 |
+
[(None,"What can I help you?")],
|
164 |
+
elem_id="chatbot",
|
165 |
+
bubble_full_width=False,
|
166 |
+
height=600
|
167 |
+
)
|
168 |
+
components["chat_input"] = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
169 |
+
components["db_select"] = gr.CheckboxGroup(choices=knowledgeBase.get_bases(),value=None,label="知识库", info="可选择1个或多个知识库")
|
170 |
create_event_handlers()
|
171 |
+
demo.load(init,None,gradio("db_view"))
|
172 |
return demo
|
173 |
|
174 |
+
def init():
|
175 |
+
# db_list = knowledgeBase.get_bases()
|
176 |
+
db_df_list = knowledgeBase.get_df_bases()
|
177 |
+
return db_df_list
|
178 |
|
179 |
def create_event_handlers():
|
180 |
params["algo_type"] = gr.State("全景分割")
|
|
|
218 |
do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output")
|
219 |
)
|
220 |
|
221 |
+
components["db_submit_btn"].click(
|
222 |
+
file_handler,gradio('file_upload','db_name'),gradio("db_view",'db_select',"db_test_select")
|
223 |
+
)
|
224 |
+
|
225 |
+
components["chat_input"].submit(
|
226 |
+
do_llm_request, gradio("chatbot", "chat_input"), gradio("chatbot", "chat_input")
|
227 |
+
).then(
|
228 |
+
do_llm_response, gradio("chatbot","db_select"), gradio("chatbot"), api_name="bot_response"
|
229 |
+
).then(
|
230 |
+
lambda: gr.MultimodalTextbox(interactive=True), None, gradio('chat_input')
|
231 |
+
)
|
232 |
+
|
233 |
+
# components["chatbot"].like(print_like_dislike, None, None)
|
234 |
+
|
235 |
+
components['dbtest_submit_btn'].click(
|
236 |
+
do_search, gradio('db_test_select','db_input'), gradio('db_search_result')
|
237 |
+
)
|
238 |
+
|
239 |
def do_refernce(algo_type,input_image):
|
240 |
# def do_refernce():
|
241 |
print("input image",input_image)
|
|
|
325 |
points_array_reshaped = points_array.reshape(-1, 2)
|
326 |
return points_array_reshaped
|
327 |
|
328 |
+
|
329 |
+
def print_like_dislike(x: gr.LikeData):
|
330 |
+
print(x.index, x.value, x.liked)
|
331 |
+
|
332 |
+
def do_llm_request(history, message):
|
333 |
+
for x in message["files"]:
|
334 |
+
history.append(((x,), None))
|
335 |
+
if message["text"] is not None:
|
336 |
+
history.append((message["text"], None))
|
337 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
338 |
+
|
339 |
+
def do_llm_response(history,selected_dbs):
|
340 |
+
user_input = history[-1][0]
|
341 |
+
prompt = ""
|
342 |
+
quote = ""
|
343 |
+
print("----------",selected_dbs)
|
344 |
+
if selected_dbs is not None and len(selected_dbs) != 0:
|
345 |
+
knowledge = knowledgeBase.retrieve_documents(selected_dbs,user_input)
|
346 |
+
print("do_llm_response context:",knowledge)
|
347 |
+
prompt = f'''
|
348 |
+
背景1:{knowledge[0]["content"]}
|
349 |
+
背景2:{knowledge[1]["content"]}
|
350 |
+
背景3:{knowledge[2]["content"]}
|
351 |
+
基于以上事实回答问题:{user_input}
|
352 |
+
'''
|
353 |
+
print("do_llm_response prompt:",prompt)
|
354 |
+
quote = f'''
|
355 |
+
> 文档:{knowledge[0]["meta"]["source"]},页码:{knowledge[0]["meta"]["page"]}
|
356 |
+
> 文档:{knowledge[1]["meta"]["source"]},页码:{knowledge[1]["meta"]["page"]}
|
357 |
+
> 文档:{knowledge[2]["meta"]["source"]},页码:{knowledge[2]["meta"]["page"]}
|
358 |
+
'''
|
359 |
+
else:
|
360 |
+
prompt = user_input
|
361 |
+
|
362 |
+
response = llm(prompt)
|
363 |
+
history[-1][1] = ""
|
364 |
+
response = response.removeprefix(prompt)
|
365 |
+
response += quote
|
366 |
+
for character in response:
|
367 |
+
history[-1][1] += character
|
368 |
+
time.sleep(0.01)
|
369 |
+
yield history
|
370 |
+
|
371 |
+
def llm(input):
|
372 |
+
import requests
|
373 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
374 |
+
headers = {"Authorization": "Bearer "}
|
375 |
+
|
376 |
+
def query(payload):
|
377 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
378 |
+
return response.json()
|
379 |
+
|
380 |
+
output = query({
|
381 |
+
"inputs": input,
|
382 |
+
})
|
383 |
+
print(output)
|
384 |
+
if len(output) >0:
|
385 |
+
return output[0]['generated_text']
|
386 |
+
return ""
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
def file_handler(file_objs,name):
|
391 |
+
import shutil
|
392 |
+
import os
|
393 |
+
|
394 |
+
print("file_obj:",file_objs)
|
395 |
+
|
396 |
+
os.makedirs(os.path.dirname("./files/input/"), exist_ok=True)
|
397 |
+
|
398 |
+
for idx, file in enumerate(file_objs):
|
399 |
+
print(file)
|
400 |
+
file_path = "./files/input/" + os.path.basename(file.name)
|
401 |
+
if not os.path.exists(file_path):
|
402 |
+
shutil.move(file.name,"./files/input/")
|
403 |
+
|
404 |
+
knowledgeBase.add_documents_to_kb(name,[file_path])
|
405 |
+
|
406 |
+
dbs = knowledgeBase.get_bases()
|
407 |
+
dfs = knowledgeBase.get_df_bases()
|
408 |
+
return dfs,gr.CheckboxGroup(dbs,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(dbs,multiselect=True, label="知识库选择")
|
409 |
+
|
410 |
+
def do_search(selected_dbs,user_input):
|
411 |
+
print("do_search:",selected_dbs,user_input)
|
412 |
+
context = knowledgeBase.retrieve_documents(selected_dbs,user_input)
|
413 |
+
return context
|
414 |
+
|
415 |
if __name__ == "__main__":
|
416 |
demo = create_ui()
|
417 |
# demo.launch(server_name="10.151.124.137")
|
embedding.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
from sklearn.preprocessing import normalize
|
3 |
+
from typing import Any, List, Mapping, Optional,Union
|
4 |
+
from langchain.callbacks.manager import (
|
5 |
+
CallbackManagerForLLMRun
|
6 |
+
)
|
7 |
+
from langchain_core.embeddings import Embeddings
|
8 |
+
import torch
|
9 |
+
|
10 |
+
class Embedding(Embeddings):
|
11 |
+
|
12 |
+
def __init__(self,**kwargs):
|
13 |
+
self.model=AutoModel.from_pretrained('BAAI/bge-small-zh-v1.5')
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-zh-v1.5')
|
15 |
+
self.model.eval()
|
16 |
+
|
17 |
+
@property
|
18 |
+
def _llm_type(self) -> str:
|
19 |
+
return "BAAI/bge-small-zh-v1.5"
|
20 |
+
|
21 |
+
@property
|
22 |
+
def model_name(self) -> str:
|
23 |
+
return "embedding"
|
24 |
+
|
25 |
+
def _call(
|
26 |
+
self,
|
27 |
+
prompt: List[str],
|
28 |
+
stop: Optional[List[str]] = None,
|
29 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
30 |
+
**kwargs: Any,
|
31 |
+
) -> str:
|
32 |
+
encoded_input = self.tokenizer(prompt, padding=True, truncation=True, return_tensors='pt')
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
model_output = self.model(**encoded_input)
|
36 |
+
# Perform pooling. In this case, cls pooling.
|
37 |
+
sentence_embeddings = model_output[0][:, 0]
|
38 |
+
print(sentence_embeddings.shape)
|
39 |
+
# normalize embeddings
|
40 |
+
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
41 |
+
return sentence_embeddings.numpy()
|
42 |
+
|
43 |
+
@property
|
44 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
45 |
+
"""Get the identifying parameters."""
|
46 |
+
return {"model_path": self.model_path}
|
47 |
+
|
48 |
+
def embed_documents(self, texts) -> List[List[float]]:
|
49 |
+
# Embed a list of documents
|
50 |
+
embeddings = []
|
51 |
+
print("embed_documents:",len(texts),type(texts))
|
52 |
+
embedding = self._call(texts)
|
53 |
+
for row in embedding:
|
54 |
+
embeddings.append(row)
|
55 |
+
# print("embed_documents: shape",embeddings.shape)
|
56 |
+
return embeddings
|
57 |
+
|
58 |
+
def embed_query(self, text) -> List[float]:
|
59 |
+
# Embed a single query
|
60 |
+
embedding = self._call([text])
|
61 |
+
return embedding[0]
|
62 |
+
|
63 |
+
|
64 |
+
# if __name__ == '__main__':
|
65 |
+
# sd = Embedding()
|
66 |
+
# v1 = sd.embed_query("他是一个人")
|
67 |
+
# v2 = sd.embed_query("他是一个好人")
|
68 |
+
# v3 = sd.embed_documents(["她是一条狗","他是一个人"])
|
69 |
+
# print(v1 @ v2.T)
|
requirements.txt
CHANGED
@@ -14,4 +14,10 @@ cloudpickle==2.2.1
|
|
14 |
segment_anything @ git+https://github.com/facebookresearch/segment-anything.git
|
15 |
paddlepaddle==2.6.1
|
16 |
paddleocr==2.7.3
|
17 |
-
easyocr==1.7.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
segment_anything @ git+https://github.com/facebookresearch/segment-anything.git
|
15 |
paddlepaddle==2.6.1
|
16 |
paddleocr==2.7.3
|
17 |
+
easyocr==1.7.1
|
18 |
+
scikit-learn==1.5.0
|
19 |
+
faiss-cpu==1.8.0
|
20 |
+
pypdf==4.2.0
|
21 |
+
langchain==0.2.5
|
22 |
+
langchain-community==0.2.5
|
23 |
+
transformers==4.32.1
|
retriever.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.vectorstores import FAISS
|
2 |
+
from langchain_community.document_loaders import TextLoader, JSONLoader, PyPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
5 |
+
import faiss
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
from typing import Any,List,Dict
|
9 |
+
from embedding import Embedding
|
10 |
+
|
11 |
+
|
12 |
+
class KnowledgeBaseManager:
|
13 |
+
def __init__(self, base_path="./knowledge_bases", embedding_dim=512, batch_size=16):
|
14 |
+
self.base_path = base_path
|
15 |
+
self.embedding_dim = embedding_dim
|
16 |
+
self.batch_size = batch_size
|
17 |
+
self.embeddings = Embedding()
|
18 |
+
self.knowledge_bases: Dict[str, FAISS] = {}
|
19 |
+
os.makedirs(self.base_path, exist_ok=True)
|
20 |
+
|
21 |
+
faiss_files = glob.glob(os.path.join(base_path, '*.faiss'))
|
22 |
+
# 获取不带后缀的名称
|
23 |
+
file_names_without_extension = [os.path.splitext(os.path.basename(file))[0] for file in faiss_files]
|
24 |
+
for name in file_names_without_extension:
|
25 |
+
self.load_knowledge_base(name)
|
26 |
+
|
27 |
+
|
28 |
+
def create_knowledge_base(self, name: str):
|
29 |
+
index = faiss.IndexFlatL2(self.embedding_dim)
|
30 |
+
kb = FAISS(self.embeddings, index, InMemoryDocstore(), {})
|
31 |
+
if name in self.knowledge_bases:
|
32 |
+
print(f"Knowledge base '{name}' already exists.")
|
33 |
+
return
|
34 |
+
|
35 |
+
self.knowledge_bases[name] = kb
|
36 |
+
self.save_knowledge_base(name)
|
37 |
+
print(f"Knowledge base '{name}' created.")
|
38 |
+
|
39 |
+
def delete_knowledge_base(self, name: str):
|
40 |
+
if name in self.knowledge_bases:
|
41 |
+
del self.knowledge_bases[name]
|
42 |
+
os.remove(os.path.join(self.base_path, f"{name}.faiss"))
|
43 |
+
print(f"Knowledge base '{name}' deleted.")
|
44 |
+
else:
|
45 |
+
print(f"Knowledge base '{name}' does not exist.")
|
46 |
+
|
47 |
+
def load_knowledge_base(self, name: str):
|
48 |
+
kb_path = os.path.join(self.base_path, f"{name}.faiss")
|
49 |
+
if os.path.exists(kb_path):
|
50 |
+
self.knowledge_bases[name] = FAISS.load_local(self.base_path, self.embeddings, name, allow_dangerous_deserialization=True)
|
51 |
+
print(f"Knowledge base '{name}' loaded.")
|
52 |
+
else:
|
53 |
+
print(f"Knowledge base '{name}' does not exist.")
|
54 |
+
|
55 |
+
def save_knowledge_base(self, name: str):
|
56 |
+
if name in self.knowledge_bases:
|
57 |
+
self.knowledge_bases[name].save_local(self.base_path, name)
|
58 |
+
print(f"Knowledge base '{name}' saved.")
|
59 |
+
else:
|
60 |
+
print(f"Knowledge base '{name}' does not exist.")
|
61 |
+
|
62 |
+
# Document(page_content = '渠道版', metadata = {
|
63 |
+
# 'source': './files/input/PS004.pdf',
|
64 |
+
# 'page': 0
|
65 |
+
# }), Document(page_content = '2/20.', metadata = {
|
66 |
+
# 'source': './files/input/PS004.pdf',
|
67 |
+
# 'page': 1
|
68 |
+
# })
|
69 |
+
def add_documents_to_kb(self, name: str, file_paths: List[str]):
|
70 |
+
if name not in self.knowledge_bases:
|
71 |
+
print(f"Knowledge base '{name}' does not exist.")
|
72 |
+
self.create_knowledge_base(name)
|
73 |
+
|
74 |
+
kb = self.knowledge_bases[name]
|
75 |
+
documents = self.load_documents(file_paths)
|
76 |
+
print(f"Loaded {len(documents)} documents.")
|
77 |
+
print(documents)
|
78 |
+
pages = self.split_documents(documents)
|
79 |
+
print(f"Split documents into {len(pages)} pages.")
|
80 |
+
# print(pages)
|
81 |
+
|
82 |
+
doc_ids = []
|
83 |
+
for i in range(0, len(pages), self.batch_size):
|
84 |
+
batch = pages[i:i+self.batch_size]
|
85 |
+
doc_ids.extend(kb.add_documents(batch))
|
86 |
+
|
87 |
+
self.save_knowledge_base(name)
|
88 |
+
return doc_ids
|
89 |
+
|
90 |
+
def load_documents(self, file_paths: List[str]):
|
91 |
+
documents = []
|
92 |
+
for file_path in file_paths:
|
93 |
+
loader = self.get_loader(file_path)
|
94 |
+
documents.extend(loader.load())
|
95 |
+
return documents
|
96 |
+
|
97 |
+
def get_loader(self, file_path: str):
|
98 |
+
if file_path.endswith('.txt'):
|
99 |
+
return TextLoader(file_path)
|
100 |
+
elif file_path.endswith('.json'):
|
101 |
+
return JSONLoader(file_path)
|
102 |
+
elif file_path.endswith('.pdf'):
|
103 |
+
return PyPDFLoader(file_path)
|
104 |
+
else:
|
105 |
+
raise ValueError("Unsupported file format")
|
106 |
+
|
107 |
+
def split_documents(self, documents):
|
108 |
+
text_splitter = RecursiveCharacterTextSplitter(separators=[
|
109 |
+
"\n\n",
|
110 |
+
"\n",
|
111 |
+
" ",
|
112 |
+
".",
|
113 |
+
",",
|
114 |
+
"\u200b", # Zero-width space
|
115 |
+
"\uff0c", # Fullwidth comma
|
116 |
+
"\u3001", # Ideographic comma
|
117 |
+
"\uff0e", # Fullwidth full stop
|
118 |
+
"\u3002", # Ideographic full stop
|
119 |
+
"",
|
120 |
+
],
|
121 |
+
chunk_size=512, chunk_overlap=0)
|
122 |
+
return text_splitter.split_documents(documents)
|
123 |
+
|
124 |
+
def retrieve_documents(self, names: List[str], query: str):
|
125 |
+
results = []
|
126 |
+
for name in names:
|
127 |
+
if name not in self.knowledge_bases:
|
128 |
+
print(f"Knowledge base '{name}' does not exist.")
|
129 |
+
continue
|
130 |
+
|
131 |
+
retriever = self.knowledge_bases[name].as_retriever(
|
132 |
+
search_type="mmr",
|
133 |
+
search_kwargs={"score_threshold": 0.5, "k": 3}
|
134 |
+
)
|
135 |
+
docs = retriever.get_relevant_documents(query)
|
136 |
+
results.extend([{"name": name, "content": doc.page_content,"meta": doc.metadata} for doc in docs])
|
137 |
+
|
138 |
+
|
139 |
+
return results
|
140 |
+
|
141 |
+
def get_bases(self):
|
142 |
+
data = self.knowledge_bases.keys()
|
143 |
+
return list(data)
|
144 |
+
|
145 |
+
def get_df_bases(self):
|
146 |
+
import pandas as pd
|
147 |
+
data = self.knowledge_bases.keys()
|
148 |
+
return pd.DataFrame(list(data), columns=['列表'])
|
149 |
+
|
150 |
+
knowledgeBase = KnowledgeBaseManager()
|