Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from gradio_image_prompter import ImagePrompter | |
from inference import ModelFactory | |
from face import FaceAlgo | |
from sam_everything import SamAnything | |
from ocr import do_ocr | |
from retriever import knowledgeBase | |
import time | |
from pathlib import Path | |
current_file_path = Path(__file__).resolve() | |
absolute_path = (current_file_path.parent / "files" / "input").resolve() | |
components = {} | |
params = { | |
"algo_type": None, | |
"input_image":None | |
} | |
def gradio(*keys): | |
if len(keys) == 1 and type(keys[0]) in [list, tuple]: | |
keys = keys[0] | |
return [components[k] for k in keys] | |
algo_map = { | |
"目标检测":"detect", | |
"单阶段目标检测":"onestep_detect", | |
"分类":"classification", | |
"特征提取":"feature", | |
"语义分割":"semantic", | |
"实例分割":"instance", | |
"关键点检测":"keypoint", | |
"全景分割":"panoptic", | |
"YOLO":"yolo", | |
} | |
face_algo_map = { | |
"人脸检测":"detect", | |
"人脸识别":"recognize", | |
"人脸比对":"compare", | |
"特征提取":"feature", | |
"属性分析":"attr", | |
} | |
def create_ui(): | |
with gr.Blocks() as demo: | |
with gr.Tab("基础算法"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["algo_type"] = gr.Dropdown( | |
["目标检测","单阶段目标检测", "分类", "特征提取","语义分割","实例分割","关键点检测","全景分割","YOLO"],value="全景分割", | |
label="算法类别",interactive=True | |
) | |
with gr.Column(scale=2): | |
components["submit_btn"] = gr.Button(value="解析") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(elem_id='audio-container'): | |
with gr.Group(): | |
components["image_input"] = gr.Image(type="pil",elem_id='image-input',label='输入') | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Group(): | |
components["image_output"] = gr.Image(type="pil",elem_id='image-output',label='输出',interactive=False) | |
with gr.Row(): | |
with gr.Group(): | |
components["result_output"] = gr.JSON(label="推理结果") | |
with gr.Tab("人脸算法"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["face_type"] = gr.Dropdown( | |
["人脸检测","人脸识别", "人脸比对", "特征提取","属性分析"],value="人脸检测", | |
label="算法类别",interactive=True | |
) | |
with gr.Column(scale=2): | |
components["face_submit_btn"] = gr.Button(value="解析") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(elem_id=''): | |
with gr.Group(): | |
components["face_input"] = gr.Gallery(elem_id='face-input',label='输入',columns=2,type="pil") | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Group(): | |
components["face_image_output"] = gr.Gallery(elem_id='face_image_output',label='输出',columns=2,interactive=False) | |
with gr.Row(): | |
with gr.Group(): | |
components["face_output"] = gr.JSON(label="推理结果") | |
with gr.Tab("SAM everything"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["sam_submit_btn"] = gr.Button(value="解析") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Group(): | |
# components["sam_input"] = gr.ImageEditor(elem_id='sam-input',label='输入',type="pil") | |
components["sam_input"] = ImagePrompter(elem_id='sam-input',label='输入',type="pil") | |
with gr.Column(scale=2): | |
with gr.Group(): | |
components["sam_output"] = gr.Gallery(elem_id='sam_output',label='输出',columns=1,interactive=False) | |
with gr.Tab("OCR"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["ocr_type"] = gr.Dropdown( | |
["OCR","Easy"],value="Easy", | |
label="算法类别",interactive=True | |
) | |
with gr.Column(scale=2): | |
components["submit_ocr_btn"] = gr.Button(value="解析") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(elem_id=''): | |
with gr.Group(): | |
components["ocr_input"] = gr.Image(elem_id='ocr-input',label='输入',type="pil") | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Group(): | |
components["ocr_output"] = gr.Image(elem_id='ocr_output',label='输出',interactive=False,type="pil") | |
with gr.Row(): | |
with gr.Group(): | |
components["ocr_json_output"] = gr.JSON(label="推理结果") | |
with gr.Tab("知识库"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
components["db_view"] = gr.Dataframe( | |
headers=["列表"], | |
datatype=["str"], | |
row_count=2, | |
col_count=(1, "fixed"), | |
interactive=False | |
) | |
components["file_expr"] = gr.FileExplorer( | |
scale=1, | |
value=[], | |
file_count="single", | |
root=absolute_path, | |
# ignore_glob="**/__init__.py", | |
elem_id="file_expr", | |
) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["db_name"] = gr.Textbox(label="名称", info="请输入库名称", lines=1, value="") | |
with gr.Column(scale=2): | |
components["db_submit_btn"] = gr.Button(value="提交") | |
components["file_upload"] = gr.File(elem_id='file_upload',file_count='multiple',label='文档上传', file_types=[".pdf", ".doc", '.docx', '.json', '.csv']) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
components["db_input"] = gr.Textbox(label="关键词", lines=1, value="") | |
with gr.Column(scale=1): | |
components["db_test_select"] = gr.Dropdown(knowledgeBase.get_bases(),multiselect=True, label="知识库选择") | |
with gr.Column(scale=1): | |
components["dbtest_submit_btn"] = gr.Button(value="检索") | |
with gr.Row(): | |
with gr.Group(): | |
components["db_search_result"] = gr.JSON(label="检索结果") | |
with gr.Tab("问答"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
components["ak"] = gr.Textbox(label="appid") | |
components["sk"] = gr.Textbox(label="secret") | |
components["llm_client"] =gr.Radio(["Wenxin", "Tongyi","Huggingface"],value="Wenxin", label="llm") | |
components["llm_setting_btn"] = gr.Button(value="设置") | |
with gr.Column(scale=2): | |
with gr.Group(): | |
components["chatbot"] = gr.Chatbot( | |
[(None,"你好,有什么需要帮助的?")], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
height=600 | |
) | |
components["chat_input"] = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
components["db_select"] = gr.CheckboxGroup(knowledgeBase.get_bases(),label="知识库", info="可选择1个或多个知识库") | |
create_event_handlers() | |
demo.load(init,None,gradio("db_view","db_select","db_test_select")) | |
return demo | |
def init(): | |
db_list = knowledgeBase.get_bases() | |
db_df_list = knowledgeBase.get_df_bases() | |
return db_df_list,gr.CheckboxGroup(db_list,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(db_list,multiselect=True, label="知识库选择") | |
def create_event_handlers(): | |
params["algo_type"] = gr.State("全景分割") | |
params["input_image"] = gr.State() | |
params["face_type"] = gr.State("人脸检测") | |
components["image_input"].upload( | |
lambda x: x, gradio('image_input'), params["input_image"] | |
) | |
components["algo_type"].change( | |
lambda x: x, gradio('algo_type'), params["algo_type"] | |
) | |
components["submit_btn"].click( | |
do_refernce,gradio('algo_type','image_input'),gradio("result_output",'image_output') | |
) | |
components["face_type"].change( | |
ui_by_facetype, gradio('face_type'), params["face_type"] | |
) | |
components["face_submit_btn"].click( | |
do_face_refernce,gradio('face_type','face_input'),gradio("face_output",'face_image_output') | |
) | |
# components["sam_input"].upload( | |
# do_sam_everything,gradio('sam_input'),gradio("sam_output") | |
# ) | |
# components["sam_input"].change( | |
# do_sam_everything,gradio('sam_input'),gradio("sam_output") | |
# ) | |
components["sam_submit_btn"].click( | |
do_sam_everything,gradio('sam_input'),gradio("sam_output") | |
) | |
components["submit_ocr_btn"].click( | |
do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output") | |
) | |
components["db_submit_btn"].click( | |
file_handler,gradio('file_upload','db_name'),gradio("db_view",'db_select',"db_test_select") | |
) | |
components["chat_input"].submit( | |
do_llm_request, gradio("chatbot", "chat_input"), gradio("chatbot", "chat_input") | |
).then( | |
do_llm_response, gradio("chatbot","db_select"), gradio("chatbot"), api_name="bot_response" | |
).then( | |
lambda: gr.MultimodalTextbox(interactive=True), None, gradio('chat_input') | |
) | |
# components["chatbot"].like(print_like_dislike, None, None) | |
components['dbtest_submit_btn'].click( | |
do_search, gradio('db_test_select','db_input'), gradio('db_search_result') | |
) | |
components['llm_setting_btn'].click( | |
llm, gradio('ak','sk','llm_client'), None | |
) | |
components['db_view'].select( | |
db_expr, gradio('db_view'), gradio('file_expr') | |
) | |
def do_refernce(algo_type,input_image): | |
# def do_refernce(): | |
print("input image",input_image) | |
print(algo_type) | |
if input_image is None: | |
gr.Warning('请上传图片') | |
return None | |
algo_type = algo_map[algo_type] | |
factory = ModelFactory() | |
output,output_image = factory.predict(pil_image=input_image,task_type=algo_type) | |
if output_image is None or len(output_image) == 0: | |
return output,None | |
print("output image",output_image[0]) | |
return output,output_image[0] | |
def ui_by_facetype(face_type): | |
print("ui_by_facetype",face_type) | |
def do_face_refernce(algo_type,input_images): | |
print("input image",input_images) | |
print(algo_type) | |
if input_images is None: | |
gr.Warning('请上传图片') | |
return None,None | |
input1 = input_images[0][0] | |
input2 = None | |
algo_type = face_algo_map[algo_type] | |
if algo_type == "compare" and len(input_images) >=2: | |
input2 = input_images[1][0] | |
elif algo_type == "compare" and len(input_images) < 2: | |
gr.Warning('请上传两张图片') | |
return None,None | |
m = FaceAlgo() # pragma: no cover | |
out,faces = m.predict(pil_image=input1,pil_image1=input2,algo_type=algo_type) | |
return out,faces | |
def do_sam_everything(im): | |
sam_anything = SamAnything() | |
print(im) | |
image_pil = im['image'] | |
points = im['points'] | |
images = None | |
if points is None or len(points) == 0: | |
_, images = sam_anything.seg_all(image_pil) | |
else: | |
point_coords = [] | |
box = None | |
for item in points: | |
if item[2] == 1: | |
# 点类型 | |
point_coords.append([item[0],item[1]]) | |
else: | |
# box类型,只使用最后一个box | |
box = [item[0],item[1],item[3],item[4]] | |
box = np.array(box) | |
if box is not None: | |
_, images = sam_anything.seg_with_promp(image_pil,box=box) | |
else: | |
coords = np.array(point_coords) | |
print("point_coords:",coords.shape) | |
_, images = sam_anything.seg_with_promp(image_pil,point_coords=coords) | |
return images | |
def point_to_mask(pil_image): | |
# 遍历每个像素 | |
width, height = pil_image.size | |
print(width, height) | |
points_list = [] | |
for x in range(width): | |
for y in range(height): | |
# 获取像素的RGB值 | |
pix_val = pil_image.getpixel((x, y)) | |
if pix_val[0] != 0 and pix_val[1] != 0 and pix_val[2] != 0: | |
points_list.append((x, y)) | |
points_array = np.array(points_list) | |
points_array_reshaped = points_array.reshape(-1, 2) | |
return points_array_reshaped | |
def print_like_dislike(x: gr.LikeData): | |
print(x.index, x.value, x.liked) | |
def do_llm_request(history, message): | |
for x in message["files"]: | |
history.append(((x,), None)) | |
if message["text"] is not None: | |
history.append((message["text"], None)) | |
return history, gr.MultimodalTextbox(value=None, interactive=False) | |
def do_llm_response(history,selected_dbs): | |
print("do_llm_response:",history,selected_dbs) | |
user_input = history[-1][0] | |
prompt = "" | |
quote = "" | |
if len(selected_dbs) > 0: | |
knowledge = knowledgeBase.retrieve_documents(selected_dbs,user_input) | |
print("do_llm_response context:",knowledge) | |
prompt = f''' | |
背景1:{knowledge[0]["content"]} | |
背景2:{knowledge[1]["content"]} | |
背景3:{knowledge[2]["content"]} | |
基于以上事实回答问题:{user_input} | |
''' | |
quote = f''' | |
> 文档:{knowledge[0]["meta"]["source"]},页码:{knowledge[0]["meta"]["page"]} | |
> 文档:{knowledge[1]["meta"]["source"]},页码:{knowledge[1]["meta"]["page"]} | |
> 文档:{knowledge[2]["meta"]["source"]},页码:{knowledge[2]["meta"]["page"]} | |
''' | |
else: | |
prompt = user_input | |
history[-1][1] = "" | |
if llm_client is None: | |
gr.Warning("请先设置大模型") | |
response = "模型参数未设置" | |
else: | |
print("do_llm_response prompt:",prompt) | |
response = llm_client(prompt) | |
response = response.removeprefix(prompt) | |
response += quote | |
for character in response: | |
history[-1][1] += character | |
time.sleep(0.01) | |
yield history | |
llm_client = None | |
def llm(ak,sk,client): | |
global llm_client | |
import llm | |
llm.init_param(ak,sk) | |
if client == "Wenxin": | |
llm_client = llm.baidu_client | |
elif client == "Tongyi": | |
llm_client = llm.qwen_agent_app | |
elif client == "Huggingface": | |
llm_client = llm.hg_client | |
if ak == "" and sk == "": | |
gr.Info("重置成功") | |
else: | |
gr.Info("设置成功") | |
return llm_client | |
def file_handler(file_objs,name): | |
import shutil | |
import os | |
print("file_obj:",file_objs) | |
os.makedirs(os.path.dirname("./files/input/"), exist_ok=True) | |
for idx, file in enumerate(file_objs): | |
print(file) | |
file_path = "./files/input/" + os.path.basename(file.name) | |
if not os.path.exists(file_path): | |
shutil.move(file.name,"./files/input/") | |
knowledgeBase.add_documents_to_kb(name,[file_path]) | |
dbs = knowledgeBase.get_bases() | |
dfs = knowledgeBase.get_df_bases() | |
return dfs,gr.CheckboxGroup(dbs,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(dbs,multiselect=True, label="知识库选择") | |
def db_expr(selected_index: gr.SelectData, dataframe_origin): | |
print("db_expr",selected_index.index) | |
dbname = dataframe_origin.iloc[selected_index.index[0],selected_index.index[1]] | |
print("db_expr",dbname) | |
return knowledgeBase.get_db_files(dbname) | |
def do_search(selected_dbs,user_input): | |
print("do_search:",selected_dbs,user_input) | |
context = knowledgeBase.retrieve_documents(selected_dbs,user_input) | |
return context | |
if __name__ == "__main__": | |
demo = create_ui() | |
# demo.launch(server_name="10.151.124.137") | |
demo.launch() |