ai / app.py
neoguojing
fix
864919f
import gradio as gr
import numpy as np
from gradio_image_prompter import ImagePrompter
from inference import ModelFactory
from face import FaceAlgo
from sam_everything import SamAnything
from ocr import do_ocr
from retriever import knowledgeBase
import time
from pathlib import Path
current_file_path = Path(__file__).resolve()
absolute_path = (current_file_path.parent / "files" / "input").resolve()
components = {}
params = {
"algo_type": None,
"input_image":None
}
def gradio(*keys):
if len(keys) == 1 and type(keys[0]) in [list, tuple]:
keys = keys[0]
return [components[k] for k in keys]
algo_map = {
"目标检测":"detect",
"单阶段目标检测":"onestep_detect",
"分类":"classification",
"特征提取":"feature",
"语义分割":"semantic",
"实例分割":"instance",
"关键点检测":"keypoint",
"全景分割":"panoptic",
"YOLO":"yolo",
}
face_algo_map = {
"人脸检测":"detect",
"人脸识别":"recognize",
"人脸比对":"compare",
"特征提取":"feature",
"属性分析":"attr",
}
def create_ui():
with gr.Blocks() as demo:
with gr.Tab("基础算法"):
with gr.Row():
with gr.Column(scale=2):
components["algo_type"] = gr.Dropdown(
["目标检测","单阶段目标检测", "分类", "特征提取","语义分割","实例分割","关键点检测","全景分割","YOLO"],value="全景分割",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id='audio-container'):
with gr.Group():
components["image_input"] = gr.Image(type="pil",elem_id='image-input',label='输入')
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["image_output"] = gr.Image(type="pil",elem_id='image-output',label='输出',interactive=False)
with gr.Row():
with gr.Group():
components["result_output"] = gr.JSON(label="推理结果")
with gr.Tab("人脸算法"):
with gr.Row():
with gr.Column(scale=2):
components["face_type"] = gr.Dropdown(
["人脸检测","人脸识别", "人脸比对", "特征提取","属性分析"],value="人脸检测",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["face_submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id=''):
with gr.Group():
components["face_input"] = gr.Gallery(elem_id='face-input',label='输入',columns=2,type="pil")
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["face_image_output"] = gr.Gallery(elem_id='face_image_output',label='输出',columns=2,interactive=False)
with gr.Row():
with gr.Group():
components["face_output"] = gr.JSON(label="推理结果")
with gr.Tab("SAM everything"):
with gr.Row():
with gr.Column(scale=2):
components["sam_submit_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
# components["sam_input"] = gr.ImageEditor(elem_id='sam-input',label='输入',type="pil")
components["sam_input"] = ImagePrompter(elem_id='sam-input',label='输入',type="pil")
with gr.Column(scale=2):
with gr.Group():
components["sam_output"] = gr.Gallery(elem_id='sam_output',label='输出',columns=1,interactive=False)
with gr.Tab("OCR"):
with gr.Row():
with gr.Column(scale=2):
components["ocr_type"] = gr.Dropdown(
["OCR","Easy"],value="Easy",
label="算法类别",interactive=True
)
with gr.Column(scale=2):
components["submit_ocr_btn"] = gr.Button(value="解析")
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id=''):
with gr.Group():
components["ocr_input"] = gr.Image(elem_id='ocr-input',label='输入',type="pil")
with gr.Column(scale=2):
with gr.Row():
with gr.Group():
components["ocr_output"] = gr.Image(elem_id='ocr_output',label='输出',interactive=False,type="pil")
with gr.Row():
with gr.Group():
components["ocr_json_output"] = gr.JSON(label="推理结果")
with gr.Tab("知识库"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
components["db_view"] = gr.Dataframe(
headers=["列表"],
datatype=["str"],
row_count=2,
col_count=(1, "fixed"),
interactive=False
)
components["file_expr"] = gr.FileExplorer(
scale=1,
value=[],
file_count="single",
root=absolute_path,
# ignore_glob="**/__init__.py",
elem_id="file_expr",
)
with gr.Column(scale=2):
with gr.Row():
with gr.Column(scale=2):
components["db_name"] = gr.Textbox(label="名称", info="请输入库名称", lines=1, value="")
with gr.Column(scale=2):
components["db_submit_btn"] = gr.Button(value="提交")
components["file_upload"] = gr.File(elem_id='file_upload',file_count='multiple',label='文档上传', file_types=[".pdf", ".doc", '.docx', '.json', '.csv'])
with gr.Row():
with gr.Column(scale=2):
components["db_input"] = gr.Textbox(label="关键词", lines=1, value="")
with gr.Column(scale=1):
components["db_test_select"] = gr.Dropdown(knowledgeBase.get_bases(),multiselect=True, label="知识库选择")
with gr.Column(scale=1):
components["dbtest_submit_btn"] = gr.Button(value="检索")
with gr.Row():
with gr.Group():
components["db_search_result"] = gr.JSON(label="检索结果")
with gr.Tab("问答"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
components["ak"] = gr.Textbox(label="appid")
components["sk"] = gr.Textbox(label="secret")
components["llm_client"] =gr.Radio(["Wenxin", "Tongyi","Huggingface"],value="Wenxin", label="llm")
components["llm_setting_btn"] = gr.Button(value="设置")
with gr.Column(scale=2):
with gr.Group():
components["chatbot"] = gr.Chatbot(
[(None,"你好,有什么需要帮助的?")],
elem_id="chatbot",
bubble_full_width=False,
height=600
)
components["chat_input"] = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
components["db_select"] = gr.CheckboxGroup(knowledgeBase.get_bases(),label="知识库", info="可选择1个或多个知识库")
create_event_handlers()
demo.load(init,None,gradio("db_view","db_select","db_test_select"))
return demo
def init():
db_list = knowledgeBase.get_bases()
db_df_list = knowledgeBase.get_df_bases()
return db_df_list,gr.CheckboxGroup(db_list,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(db_list,multiselect=True, label="知识库选择")
def create_event_handlers():
params["algo_type"] = gr.State("全景分割")
params["input_image"] = gr.State()
params["face_type"] = gr.State("人脸检测")
components["image_input"].upload(
lambda x: x, gradio('image_input'), params["input_image"]
)
components["algo_type"].change(
lambda x: x, gradio('algo_type'), params["algo_type"]
)
components["submit_btn"].click(
do_refernce,gradio('algo_type','image_input'),gradio("result_output",'image_output')
)
components["face_type"].change(
ui_by_facetype, gradio('face_type'), params["face_type"]
)
components["face_submit_btn"].click(
do_face_refernce,gradio('face_type','face_input'),gradio("face_output",'face_image_output')
)
# components["sam_input"].upload(
# do_sam_everything,gradio('sam_input'),gradio("sam_output")
# )
# components["sam_input"].change(
# do_sam_everything,gradio('sam_input'),gradio("sam_output")
# )
components["sam_submit_btn"].click(
do_sam_everything,gradio('sam_input'),gradio("sam_output")
)
components["submit_ocr_btn"].click(
do_ocr,gradio('ocr_type','ocr_input'),gradio("ocr_output","ocr_json_output")
)
components["db_submit_btn"].click(
file_handler,gradio('file_upload','db_name'),gradio("db_view",'db_select',"db_test_select")
)
components["chat_input"].submit(
do_llm_request, gradio("chatbot", "chat_input"), gradio("chatbot", "chat_input")
).then(
do_llm_response, gradio("chatbot","db_select"), gradio("chatbot"), api_name="bot_response"
).then(
lambda: gr.MultimodalTextbox(interactive=True), None, gradio('chat_input')
)
# components["chatbot"].like(print_like_dislike, None, None)
components['dbtest_submit_btn'].click(
do_search, gradio('db_test_select','db_input'), gradio('db_search_result')
)
components['llm_setting_btn'].click(
llm, gradio('ak','sk','llm_client'), None
)
components['db_view'].select(
db_expr, gradio('db_view'), gradio('file_expr')
)
def do_refernce(algo_type,input_image):
# def do_refernce():
print("input image",input_image)
print(algo_type)
if input_image is None:
gr.Warning('请上传图片')
return None
algo_type = algo_map[algo_type]
factory = ModelFactory()
output,output_image = factory.predict(pil_image=input_image,task_type=algo_type)
if output_image is None or len(output_image) == 0:
return output,None
print("output image",output_image[0])
return output,output_image[0]
def ui_by_facetype(face_type):
print("ui_by_facetype",face_type)
def do_face_refernce(algo_type,input_images):
print("input image",input_images)
print(algo_type)
if input_images is None:
gr.Warning('请上传图片')
return None,None
input1 = input_images[0][0]
input2 = None
algo_type = face_algo_map[algo_type]
if algo_type == "compare" and len(input_images) >=2:
input2 = input_images[1][0]
elif algo_type == "compare" and len(input_images) < 2:
gr.Warning('请上传两张图片')
return None,None
m = FaceAlgo() # pragma: no cover
out,faces = m.predict(pil_image=input1,pil_image1=input2,algo_type=algo_type)
return out,faces
def do_sam_everything(im):
sam_anything = SamAnything()
print(im)
image_pil = im['image']
points = im['points']
images = None
if points is None or len(points) == 0:
_, images = sam_anything.seg_all(image_pil)
else:
point_coords = []
box = None
for item in points:
if item[2] == 1:
# 点类型
point_coords.append([item[0],item[1]])
else:
# box类型,只使用最后一个box
box = [item[0],item[1],item[3],item[4]]
box = np.array(box)
if box is not None:
_, images = sam_anything.seg_with_promp(image_pil,box=box)
else:
coords = np.array(point_coords)
print("point_coords:",coords.shape)
_, images = sam_anything.seg_with_promp(image_pil,point_coords=coords)
return images
def point_to_mask(pil_image):
# 遍历每个像素
width, height = pil_image.size
print(width, height)
points_list = []
for x in range(width):
for y in range(height):
# 获取像素的RGB值
pix_val = pil_image.getpixel((x, y))
if pix_val[0] != 0 and pix_val[1] != 0 and pix_val[2] != 0:
points_list.append((x, y))
points_array = np.array(points_list)
points_array_reshaped = points_array.reshape(-1, 2)
return points_array_reshaped
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def do_llm_request(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def do_llm_response(history,selected_dbs):
print("do_llm_response:",history,selected_dbs)
user_input = history[-1][0]
prompt = ""
quote = ""
if len(selected_dbs) > 0:
knowledge = knowledgeBase.retrieve_documents(selected_dbs,user_input)
print("do_llm_response context:",knowledge)
prompt = f'''
背景1:{knowledge[0]["content"]}
背景2:{knowledge[1]["content"]}
背景3:{knowledge[2]["content"]}
基于以上事实回答问题:{user_input}
'''
quote = f'''
> 文档:{knowledge[0]["meta"]["source"]},页码:{knowledge[0]["meta"]["page"]}
> 文档:{knowledge[1]["meta"]["source"]},页码:{knowledge[1]["meta"]["page"]}
> 文档:{knowledge[2]["meta"]["source"]},页码:{knowledge[2]["meta"]["page"]}
'''
else:
prompt = user_input
history[-1][1] = ""
if llm_client is None:
gr.Warning("请先设置大模型")
response = "模型参数未设置"
else:
print("do_llm_response prompt:",prompt)
response = llm_client(prompt)
response = response.removeprefix(prompt)
response += quote
for character in response:
history[-1][1] += character
time.sleep(0.01)
yield history
llm_client = None
def llm(ak,sk,client):
global llm_client
import llm
llm.init_param(ak,sk)
if client == "Wenxin":
llm_client = llm.baidu_client
elif client == "Tongyi":
llm_client = llm.qwen_agent_app
elif client == "Huggingface":
llm_client = llm.hg_client
if ak == "" and sk == "":
gr.Info("重置成功")
else:
gr.Info("设置成功")
return llm_client
def file_handler(file_objs,name):
import shutil
import os
print("file_obj:",file_objs)
os.makedirs(os.path.dirname("./files/input/"), exist_ok=True)
for idx, file in enumerate(file_objs):
print(file)
file_path = "./files/input/" + os.path.basename(file.name)
if not os.path.exists(file_path):
shutil.move(file.name,"./files/input/")
knowledgeBase.add_documents_to_kb(name,[file_path])
dbs = knowledgeBase.get_bases()
dfs = knowledgeBase.get_df_bases()
return dfs,gr.CheckboxGroup(dbs,label="知识库", info="可选择1个或多个知识库"),gr.Dropdown(dbs,multiselect=True, label="知识库选择")
def db_expr(selected_index: gr.SelectData, dataframe_origin):
print("db_expr",selected_index.index)
dbname = dataframe_origin.iloc[selected_index.index[0],selected_index.index[1]]
print("db_expr",dbname)
return knowledgeBase.get_db_files(dbname)
def do_search(selected_dbs,user_input):
print("do_search:",selected_dbs,user_input)
context = knowledgeBase.retrieve_documents(selected_dbs,user_input)
return context
if __name__ == "__main__":
demo = create_ui()
# demo.launch(server_name="10.151.124.137")
demo.launch()