|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from typing import List, Any |
|
import scipy.signal |
|
|
|
def apply_reduction(losses, reduction="none"): |
|
"""Apply reduction to collection of losses.""" |
|
if reduction == "mean": |
|
losses = losses.mean() |
|
elif reduction == "sum": |
|
losses = losses.sum() |
|
return losses |
|
|
|
def get_window(win_type: str, win_length: int): |
|
"""Return a window function. |
|
|
|
Args: |
|
win_type (str): Window type. Can either be one of the window function provided in PyTorch |
|
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window'] |
|
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html). |
|
win_length (int): Window length |
|
|
|
Returns: |
|
win: The window as a 1D torch tensor |
|
""" |
|
|
|
try: |
|
win = getattr(torch, win_type)(win_length) |
|
except: |
|
win = torch.from_numpy(scipy.signal.windows.get_window(win_type, win_length)) |
|
|
|
return win |
|
|
|
class SumAndDifference(torch.nn.Module): |
|
"""Sum and difference signal extraction module.""" |
|
|
|
def __init__(self): |
|
"""Initialize sum and difference extraction module.""" |
|
super(SumAndDifference, self).__init__() |
|
|
|
def forward(self, x): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (Tensor): Predicted signal (B, #channels, #samples). |
|
Returns: |
|
Tensor: Sum signal. |
|
Tensor: Difference signal. |
|
""" |
|
if not (x.size(1) == 2): |
|
raise ValueError(f"Input must be stereo: {x.size(1)} channel(s).") |
|
|
|
sum_sig = self.sum(x).unsqueeze(1) |
|
diff_sig = self.diff(x).unsqueeze(1) |
|
|
|
return sum_sig, diff_sig |
|
|
|
@staticmethod |
|
def sum(x): |
|
return x[:, 0, :] + x[:, 1, :] |
|
|
|
@staticmethod |
|
def diff(x): |
|
return x[:, 0, :] - x[:, 1, :] |
|
|
|
|
|
class FIRFilter(torch.nn.Module): |
|
"""FIR pre-emphasis filtering module. |
|
|
|
Args: |
|
filter_type (str): Shape of the desired FIR filter ("hp", "fd", "aw"). Default: "hp" |
|
coef (float): Coefficient value for the filter tap (only applicable for "hp" and "fd"). Default: 0.85 |
|
ntaps (int): Number of FIR filter taps for constructing A-weighting filters. Default: 101 |
|
plot (bool): Plot the magnitude respond of the filter. Default: False |
|
|
|
Based upon the perceptual loss pre-empahsis filters proposed by |
|
[Wright & Välimäki, 2019](https://arxiv.org/abs/1911.08922). |
|
|
|
A-weighting filter - "aw" |
|
First-order highpass - "hp" |
|
Folded differentiator - "fd" |
|
|
|
Note that the default coefficeint value of 0.85 is optimized for |
|
a sampling rate of 44.1 kHz, considering adjusting this value at differnt sampling rates. |
|
""" |
|
|
|
def __init__(self, filter_type="hp", coef=0.85, fs=44100, ntaps=101, plot=False): |
|
"""Initilize FIR pre-emphasis filtering module.""" |
|
super(FIRFilter, self).__init__() |
|
self.filter_type = filter_type |
|
self.coef = coef |
|
self.fs = fs |
|
self.ntaps = ntaps |
|
self.plot = plot |
|
|
|
import scipy.signal |
|
|
|
if ntaps % 2 == 0: |
|
raise ValueError(f"ntaps must be odd (ntaps={ntaps}).") |
|
|
|
if filter_type == "hp": |
|
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1) |
|
self.fir.weight.requires_grad = False |
|
self.fir.weight.data = torch.tensor([1, -coef, 0]).view(1, 1, -1) |
|
elif filter_type == "fd": |
|
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1) |
|
self.fir.weight.requires_grad = False |
|
self.fir.weight.data = torch.tensor([1, 0, -coef]).view(1, 1, -1) |
|
elif filter_type == "aw": |
|
|
|
f1 = 20.598997 |
|
f2 = 107.65265 |
|
f3 = 737.86223 |
|
f4 = 12194.217 |
|
A1000 = 1.9997 |
|
|
|
NUMs = [(2 * np.pi * f4) ** 2 * (10 ** (A1000 / 20)), 0, 0, 0, 0] |
|
DENs = np.polymul( |
|
[1, 4 * np.pi * f4, (2 * np.pi * f4) ** 2], |
|
[1, 4 * np.pi * f1, (2 * np.pi * f1) ** 2], |
|
) |
|
DENs = np.polymul( |
|
np.polymul(DENs, [1, 2 * np.pi * f3]), [1, 2 * np.pi * f2] |
|
) |
|
|
|
|
|
b, a = scipy.signal.bilinear(NUMs, DENs, fs=fs) |
|
|
|
|
|
w_iir, h_iir = scipy.signal.freqz(b, a, worN=512, fs=fs) |
|
|
|
|
|
taps = scipy.signal.firls(ntaps, w_iir, abs(h_iir), fs=fs) |
|
|
|
|
|
self.fir = torch.nn.Conv1d( |
|
1, 1, kernel_size=ntaps, bias=False, padding=ntaps // 2 |
|
) |
|
self.fir.weight.requires_grad = False |
|
self.fir.weight.data = torch.tensor(taps.astype("float32")).view(1, 1, -1) |
|
|
|
if plot: |
|
from .plotting import compare_filters |
|
compare_filters(b, a, taps, fs=fs) |
|
|
|
def forward(self, input, target): |
|
"""Calculate forward propagation. |
|
Args: |
|
input (Tensor): Predicted signal (B, #channels, #samples). |
|
target (Tensor): Groundtruth signal (B, #channels, #samples). |
|
Returns: |
|
Tensor: Filtered signal. |
|
""" |
|
input = torch.nn.functional.conv1d( |
|
input, self.fir.weight.data, padding=self.ntaps // 2 |
|
) |
|
target = torch.nn.functional.conv1d( |
|
target, self.fir.weight.data, padding=self.ntaps // 2 |
|
) |
|
return input, target |
|
|
|
class SpectralConvergenceLoss(torch.nn.Module): |
|
"""Spectral convergence loss module. |
|
|
|
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719). |
|
""" |
|
|
|
def __init__(self): |
|
super(SpectralConvergenceLoss, self).__init__() |
|
|
|
def forward(self, x_mag, y_mag): |
|
return (torch.norm(y_mag - x_mag, p="fro", dim=[-1, -2]) / torch.norm(y_mag, p="fro", dim=[-1, -2])).mean() |
|
|
|
class STFTMagnitudeLoss(torch.nn.Module): |
|
"""STFT magnitude loss module. |
|
|
|
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719) |
|
and [Engel et al., 2020](https://arxiv.org/abs/2001.04643v1) |
|
|
|
Log-magnitudes are calculated with `log(log_fac*x + log_eps)`, where `log_fac` controls the |
|
compression strength (larger value results in more compression), and `log_eps` can be used |
|
to control the range of the compressed output values (e.g., `log_eps>=1` ensures positive |
|
output values). The default values `log_fac=1` and `log_eps=0` correspond to plain log-compression. |
|
|
|
Args: |
|
log (bool, optional): Log-scale the STFT magnitudes, |
|
or use linear scale. Default: True |
|
log_eps (float, optional): Constant value added to the magnitudes before evaluating the logarithm. |
|
Default: 0.0 |
|
log_fac (float, optional): Constant multiplication factor for the magnitudes before evaluating the logarithm. |
|
Default: 1.0 |
|
distance (str, optional): Distance function ["L1", "L2"]. Default: "L1" |
|
reduction (str, optional): Reduction of the loss elements. Default: "mean" |
|
""" |
|
|
|
def __init__(self, log=True, log_eps=0.0, log_fac=1.0, distance="L1", reduction="mean"): |
|
super(STFTMagnitudeLoss, self).__init__() |
|
|
|
self.log = log |
|
self.log_eps = log_eps |
|
self.log_fac = log_fac |
|
|
|
if distance == "L1": |
|
self.distance = torch.nn.L1Loss(reduction=reduction) |
|
elif distance == "L2": |
|
self.distance = torch.nn.MSELoss(reduction=reduction) |
|
else: |
|
raise ValueError(f"Invalid distance: '{distance}'.") |
|
|
|
def forward(self, x_mag, y_mag): |
|
if self.log: |
|
x_mag = torch.log(self.log_fac * x_mag + self.log_eps) |
|
y_mag = torch.log(self.log_fac * y_mag + self.log_eps) |
|
return self.distance(x_mag, y_mag) |
|
|
|
|
|
class STFTLoss(torch.nn.Module): |
|
"""STFT loss module. |
|
|
|
See [Yamamoto et al. 2019](https://arxiv.org/abs/1904.04472). |
|
|
|
Args: |
|
fft_size (int, optional): FFT size in samples. Default: 1024 |
|
hop_size (int, optional): Hop size of the FFT in samples. Default: 256 |
|
win_length (int, optional): Length of the FFT analysis window. Default: 1024 |
|
window (str, optional): Window to apply before FFT, can either be one of the window function provided in PyTorch |
|
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window'] |
|
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html). |
|
Default: 'hann_window' |
|
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0 |
|
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0 |
|
w_lin_mag_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0 |
|
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0 |
|
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None |
|
scale (str, optional): Optional frequency scaling method, options include: |
|
['mel', 'chroma'] |
|
Default: None |
|
n_bins (int, optional): Number of scaling frequency bins. Default: None. |
|
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False |
|
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False |
|
eps (float, optional): Small epsilon value for stablity. Default: 1e-8 |
|
output (str, optional): Format of the loss returned. |
|
'loss' : Return only the raw, aggregate loss term. |
|
'full' : Return the raw loss, plus intermediate loss terms. |
|
Default: 'loss' |
|
reduction (str, optional): Specifies the reduction to apply to the output: |
|
'none': no reduction will be applied, |
|
'mean': the sum of the output will be divided by the number of elements in the output, |
|
'sum': the output will be summed. |
|
Default: 'mean' |
|
mag_distance (str, optional): Distance function ["L1", "L2"] for the magnitude loss terms. |
|
device (str, optional): Place the filterbanks on specified device. Default: None |
|
|
|
Returns: |
|
loss: |
|
Aggreate loss term. Only returned if output='loss'. By default. |
|
loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss: |
|
Aggregate and intermediate loss terms. Only returned if output='full'. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fft_size: int = 1024, |
|
hop_size: int = 256, |
|
win_length: int = 1024, |
|
window: str = "hann_window", |
|
w_sc: float = 1.0, |
|
w_log_mag: float = 1.0, |
|
w_lin_mag: float = 0.0, |
|
w_phs: float = 0.0, |
|
sample_rate: float = None, |
|
scale: str = None, |
|
n_bins: int = None, |
|
perceptual_weighting: bool = False, |
|
scale_invariance: bool = False, |
|
eps: float = 1e-8, |
|
output: str = "loss", |
|
reduction: str = "mean", |
|
mag_distance: str = "L1", |
|
device: Any = None, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.fft_size = fft_size |
|
self.hop_size = hop_size |
|
self.win_length = win_length |
|
self.window = get_window(window, win_length) |
|
self.w_sc = w_sc |
|
self.w_log_mag = w_log_mag |
|
self.w_lin_mag = w_lin_mag |
|
self.w_phs = w_phs |
|
self.sample_rate = sample_rate |
|
self.scale = scale |
|
self.n_bins = n_bins |
|
self.perceptual_weighting = perceptual_weighting |
|
self.scale_invariance = scale_invariance |
|
self.eps = eps |
|
self.output = output |
|
self.reduction = reduction |
|
self.mag_distance = mag_distance |
|
self.device = device |
|
|
|
self.phs_used = bool(self.w_phs) |
|
|
|
self.spectralconv = SpectralConvergenceLoss() |
|
self.logstft = STFTMagnitudeLoss( |
|
log=True, |
|
reduction=reduction, |
|
distance=mag_distance, |
|
**kwargs |
|
) |
|
self.linstft = STFTMagnitudeLoss( |
|
log=False, |
|
reduction=reduction, |
|
distance=mag_distance, |
|
**kwargs |
|
) |
|
|
|
|
|
if scale is not None: |
|
try: |
|
import librosa.filters |
|
except Exception as e: |
|
print(e) |
|
print("Try `pip install auraloss[all]`.") |
|
|
|
if self.scale == "mel": |
|
assert sample_rate != None |
|
assert n_bins <= fft_size |
|
fb = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=n_bins) |
|
fb = torch.tensor(fb).unsqueeze(0) |
|
|
|
elif self.scale == "chroma": |
|
assert sample_rate != None |
|
assert n_bins <= fft_size |
|
fb = librosa.filters.chroma( |
|
sr=sample_rate, n_fft=fft_size, n_chroma=n_bins |
|
) |
|
|
|
else: |
|
raise ValueError( |
|
f"Invalid scale: {self.scale}. Must be 'mel' or 'chroma'." |
|
) |
|
|
|
self.register_buffer("fb", fb) |
|
|
|
if scale is not None and device is not None: |
|
self.fb = self.fb.to(self.device) |
|
|
|
if self.perceptual_weighting: |
|
if sample_rate is None: |
|
raise ValueError( |
|
f"`sample_rate` must be supplied when `perceptual_weighting = True`." |
|
) |
|
self.prefilter = FIRFilter(filter_type="aw", fs=sample_rate) |
|
|
|
def stft(self, x): |
|
"""Perform STFT. |
|
Args: |
|
x (Tensor): Input signal tensor (B, T). |
|
|
|
Returns: |
|
Tensor: x_mag, x_phs |
|
Magnitude and phase spectra (B, fft_size // 2 + 1, frames). |
|
""" |
|
x_stft = torch.stft( |
|
x, |
|
self.fft_size, |
|
self.hop_size, |
|
self.win_length, |
|
self.window, |
|
return_complex=True, |
|
) |
|
x_mag = torch.sqrt( |
|
torch.clamp((x_stft.real**2) + (x_stft.imag**2), min=self.eps) |
|
) |
|
|
|
|
|
if self.phs_used: |
|
x_phs = torch.angle(x_stft) |
|
else: |
|
x_phs = None |
|
|
|
return x_mag, x_phs |
|
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor): |
|
bs, chs, seq_len = input.size() |
|
|
|
if self.perceptual_weighting: |
|
|
|
input = input.view(bs * chs, 1, -1) |
|
target = target.view(bs * chs, 1, -1) |
|
|
|
|
|
self.prefilter.to(input.device) |
|
input, target = self.prefilter(input, target) |
|
|
|
|
|
input = input.view(bs, chs, -1) |
|
target = target.view(bs, chs, -1) |
|
|
|
|
|
self.window = self.window.to(input.device) |
|
|
|
x_mag, x_phs = self.stft(input.view(-1, input.size(-1))) |
|
y_mag, y_phs = self.stft(target.view(-1, target.size(-1))) |
|
|
|
|
|
if self.scale is not None: |
|
self.fb = self.fb.to(input.device) |
|
x_mag = torch.matmul(self.fb, x_mag) |
|
y_mag = torch.matmul(self.fb, y_mag) |
|
|
|
|
|
if self.scale_invariance: |
|
alpha = (x_mag * y_mag).sum([-2, -1]) / ((y_mag**2).sum([-2, -1])) |
|
y_mag = y_mag * alpha.unsqueeze(-1) |
|
|
|
|
|
sc_mag_loss = self.spectralconv(x_mag, y_mag) if self.w_sc else 0.0 |
|
log_mag_loss = self.logstft(x_mag, y_mag) if self.w_log_mag else 0.0 |
|
lin_mag_loss = self.linstft(x_mag, y_mag) if self.w_lin_mag else 0.0 |
|
phs_loss = torch.nn.functional.mse_loss(x_phs, y_phs) if self.phs_used else 0.0 |
|
|
|
|
|
loss = ( |
|
(self.w_sc * sc_mag_loss) |
|
+ (self.w_log_mag * log_mag_loss) |
|
+ (self.w_lin_mag * lin_mag_loss) |
|
+ (self.w_phs * phs_loss) |
|
) |
|
|
|
loss = apply_reduction(loss, reduction=self.reduction) |
|
|
|
if self.output == "loss": |
|
return loss |
|
elif self.output == "full": |
|
return loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss |
|
|
|
class MultiResolutionSTFTLoss(torch.nn.Module): |
|
"""Multi resolution STFT loss module. |
|
|
|
See [Yamamoto et al., 2019](https://arxiv.org/abs/1910.11480) |
|
|
|
Args: |
|
fft_sizes (list): List of FFT sizes. |
|
hop_sizes (list): List of hop sizes. |
|
win_lengths (list): List of window lengths. |
|
window (str, optional): Window to apply before FFT, options include: |
|
'hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window'] |
|
Default: 'hann_window' |
|
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0 |
|
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0 |
|
w_lin_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0 |
|
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0 |
|
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None |
|
scale (str, optional): Optional frequency scaling method, options include: |
|
['mel', 'chroma'] |
|
Default: None |
|
n_bins (int, optional): Number of mel frequency bins. Required when scale = 'mel'. Default: None. |
|
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fft_sizes: List[int] = [1024, 2048, 512], |
|
hop_sizes: List[int] = [120, 240, 50], |
|
win_lengths: List[int] = [600, 1200, 240], |
|
window: str = "hann_window", |
|
w_sc: float = 1.0, |
|
w_log_mag: float = 1.0, |
|
w_lin_mag: float = 0.0, |
|
w_phs: float = 0.0, |
|
sample_rate: float = None, |
|
scale: str = None, |
|
n_bins: int = None, |
|
perceptual_weighting: bool = False, |
|
scale_invariance: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) |
|
self.fft_sizes = fft_sizes |
|
self.hop_sizes = hop_sizes |
|
self.win_lengths = win_lengths |
|
|
|
self.stft_losses = torch.nn.ModuleList() |
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): |
|
self.stft_losses += [ |
|
STFTLoss( |
|
fs, |
|
ss, |
|
wl, |
|
window, |
|
w_sc, |
|
w_log_mag, |
|
w_lin_mag, |
|
w_phs, |
|
sample_rate, |
|
scale, |
|
n_bins, |
|
perceptual_weighting, |
|
scale_invariance, |
|
**kwargs, |
|
) |
|
] |
|
|
|
def forward(self, x, y): |
|
mrstft_loss = 0.0 |
|
sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss = [], [], [], [] |
|
|
|
for f in self.stft_losses: |
|
if f.output == "full": |
|
tmp_loss = f(x, y) |
|
mrstft_loss += tmp_loss[0] |
|
sc_mag_loss.append(tmp_loss[1]) |
|
log_mag_loss.append(tmp_loss[2]) |
|
lin_mag_loss.append(tmp_loss[3]) |
|
phs_loss.append(tmp_loss[4]) |
|
else: |
|
mrstft_loss += f(x, y) |
|
|
|
mrstft_loss /= len(self.stft_losses) |
|
|
|
if f.output == "loss": |
|
return mrstft_loss |
|
else: |
|
return mrstft_loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss |
|
|
|
|
|
class SumAndDifferenceSTFTLoss(torch.nn.Module): |
|
"""Sum and difference sttereo STFT loss module. |
|
|
|
See [Steinmetz et al., 2020](https://arxiv.org/abs/2010.10291) |
|
|
|
Args: |
|
fft_sizes (List[int]): List of FFT sizes. |
|
hop_sizes (List[int]): List of hop sizes. |
|
win_lengths (List[int]): List of window lengths. |
|
window (str, optional): Window function type. |
|
w_sum (float, optional): Weight of the sum loss component. Default: 1.0 |
|
w_diff (float, optional): Weight of the difference loss component. Default: 1.0 |
|
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False |
|
mel_stft (bool, optional): Use Multi-resoltuion mel spectrograms. Default: False |
|
n_mel_bins (int, optional): Number of mel bins to use when mel_stft = True. Default: 128 |
|
sample_rate (float, optional): Audio sample rate. Default: None |
|
output (str, optional): Format of the loss returned. |
|
'loss' : Return only the raw, aggregate loss term. |
|
'full' : Return the raw loss, plus intermediate loss terms. |
|
Default: 'loss' |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fft_sizes: List[int], |
|
hop_sizes: List[int], |
|
win_lengths: List[int], |
|
window: str = "hann_window", |
|
w_sum: float = 1.0, |
|
w_diff: float = 1.0, |
|
output: str = "loss", |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.sd = SumAndDifference() |
|
self.w_sum = w_sum |
|
self.w_diff = w_diff |
|
self.output = output |
|
self.mrstft = MultiResolutionSTFTLoss( |
|
fft_sizes, |
|
hop_sizes, |
|
win_lengths, |
|
window, |
|
**kwargs, |
|
) |
|
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor): |
|
"""This loss function assumes batched input of stereo audio in the time domain. |
|
|
|
Args: |
|
input (torch.Tensor): Input tensor with shape (batch size, 2, seq_len). |
|
target (torch.Tensor): Target tensor with shape (batch size, 2, seq_len). |
|
|
|
Returns: |
|
loss (torch.Tensor): Aggreate loss term. Only returned if output='loss'. |
|
loss (torch.Tensor), sum_loss (torch.Tensor), diff_loss (torch.Tensor): |
|
Aggregate and intermediate loss terms. Only returned if output='full'. |
|
""" |
|
assert input.shape == target.shape |
|
bs, chs, seq_len = input.size() |
|
|
|
|
|
input_sum, input_diff = self.sd(input) |
|
target_sum, target_diff = self.sd(target) |
|
|
|
|
|
sum_loss = self.mrstft(input_sum, target_sum) |
|
diff_loss = self.mrstft(input_diff, target_diff) |
|
loss = ((self.w_sum * sum_loss) + (self.w_diff * diff_loss)) / 2 |
|
|
|
if self.output == "loss": |
|
return loss |
|
elif self.output == "full": |
|
return loss, sum_loss, diff_loss |