|
import pytorch_lightning as pl |
|
import sys, gc |
|
import random |
|
import torch |
|
import torchaudio |
|
import typing as tp |
|
import wandb |
|
|
|
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image |
|
from ema_pytorch import EMA |
|
from einops import rearrange |
|
from safetensors.torch import save_file |
|
from torch import optim |
|
from torch.nn import functional as F |
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only |
|
|
|
from ..models.lm import AudioLanguageModelWrapper |
|
from .utils import create_optimizer_from_config, create_scheduler_from_config |
|
|
|
class AudioLanguageModelTrainingWrapper(pl.LightningModule): |
|
def __init__( |
|
self, |
|
model: AudioLanguageModelWrapper, |
|
lr = 1e-4, |
|
use_ema=False, |
|
ema_copy=None, |
|
optimizer_configs: dict = None, |
|
pre_encoded=False |
|
): |
|
super().__init__() |
|
|
|
self.model = model |
|
|
|
self.model.pretransform.requires_grad_(False) |
|
|
|
self.model_ema = None |
|
if use_ema: |
|
self.model_ema = EMA(self.model, ema_model=ema_copy, beta=0.99, update_every=10) |
|
|
|
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config" |
|
|
|
if optimizer_configs is None: |
|
optimizer_configs = { |
|
"lm": { |
|
"optimizer": { |
|
"type": "AdamW", |
|
"config": { |
|
"lr": lr, |
|
"betas": (0.9, 0.95), |
|
"weight_decay": 0.1 |
|
} |
|
} |
|
} |
|
} |
|
else: |
|
if lr is not None: |
|
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.") |
|
|
|
self.optimizer_configs = optimizer_configs |
|
|
|
self.pre_encoded = pre_encoded |
|
|
|
def configure_optimizers(self): |
|
lm_opt_config = self.optimizer_configs['lm'] |
|
opt_lm = create_optimizer_from_config(lm_opt_config['optimizer'], self.model.parameters()) |
|
|
|
if "scheduler" in lm_opt_config: |
|
sched_lm = create_scheduler_from_config(lm_opt_config['scheduler'], opt_lm) |
|
sched_lm_config = { |
|
"scheduler": sched_lm, |
|
"interval": "step" |
|
} |
|
return [opt_lm], [sched_lm_config] |
|
|
|
return [opt_lm] |
|
|
|
|
|
|
|
|
|
def _compute_cross_entropy( |
|
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor |
|
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]: |
|
"""Compute cross entropy between multi-codebook targets and model's logits. |
|
The cross entropy is computed per codebook to provide codebook-level cross entropy. |
|
Valid timesteps for each of the codebook are pulled from the mask, where invalid |
|
timesteps are set to 0. |
|
|
|
Args: |
|
logits (torch.Tensor): Model's logits of shape [B, K, T, card]. |
|
targets (torch.Tensor): Target codes, of shape [B, K, T]. |
|
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T]. |
|
Returns: |
|
ce (torch.Tensor): Cross entropy averaged over the codebooks |
|
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached). |
|
""" |
|
B, K, T = targets.shape |
|
assert logits.shape[:-1] == targets.shape |
|
assert mask.shape == targets.shape |
|
ce = torch.zeros([], device=targets.device) |
|
ce_per_codebook: tp.List[torch.Tensor] = [] |
|
for k in range(K): |
|
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) |
|
targets_k = targets[:, k, ...].contiguous().view(-1) |
|
mask_k = mask[:, k, ...].contiguous().view(-1) |
|
ce_targets = targets_k[mask_k] |
|
ce_logits = logits_k[mask_k] |
|
q_ce = F.cross_entropy(ce_logits, ce_targets) |
|
ce += q_ce |
|
ce_per_codebook.append(q_ce.detach()) |
|
|
|
ce = ce / K |
|
return ce, ce_per_codebook |
|
|
|
def training_step(self, batch, batch_idx): |
|
reals, metadata = batch |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
if not self.pre_encoded: |
|
codes = self.model.pretransform.tokenize(reals) |
|
else: |
|
codes = reals |
|
|
|
padding_masks = [] |
|
for md in metadata: |
|
if md["padding_mask"].ndim == 1: |
|
padding_masks.append(md["padding_mask"]) |
|
else: |
|
padding_masks.append(md["padding_mask"][0]) |
|
|
|
padding_masks = torch.stack(padding_masks, dim=0).to(self.device) |
|
|
|
|
|
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=codes.shape[2], mode='nearest').bool() |
|
|
|
condition_tensors = None |
|
|
|
|
|
if self.model.conditioner is not None: |
|
condition_tensors = self.model.conditioner(metadata, self.device) |
|
|
|
lm_output = self.model.compute_logits(codes, condition_tensors=condition_tensors, cfg_dropout_prob=0.1) |
|
|
|
logits = lm_output.logits |
|
logits_mask = lm_output.mask |
|
|
|
logits_mask = logits_mask & padding_masks |
|
|
|
cross_entropy, cross_entropy_per_codebook = self._compute_cross_entropy(logits, codes, logits_mask) |
|
|
|
loss = cross_entropy |
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/cross_entropy': cross_entropy.detach(), |
|
'train/perplexity': torch.exp(cross_entropy).detach(), |
|
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr'] |
|
} |
|
|
|
for k, ce_q in enumerate(cross_entropy_per_codebook): |
|
log_dict[f'cross_entropy_q{k + 1}'] = ce_q |
|
log_dict[f'perplexity_q{k + 1}'] = torch.exp(ce_q) |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
if self.model_ema is not None: |
|
self.model_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
|
|
model = self.model_ema.ema_model if self.model_ema is not None else self.model |
|
|
|
if use_safetensors: |
|
save_file(model.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": model.state_dict()}, path) |
|
|
|
|
|
class AudioLanguageModelDemoCallback(pl.Callback): |
|
def __init__(self, |
|
demo_every=2000, |
|
num_demos=8, |
|
sample_size=65536, |
|
sample_rate=48000, |
|
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None, |
|
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7], |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.demo_every = demo_every |
|
self.num_demos = num_demos |
|
self.demo_samples = sample_size |
|
self.sample_rate = sample_rate |
|
self.last_demo_step = -1 |
|
self.demo_conditioning = demo_conditioning |
|
self.demo_cfg_scales = demo_cfg_scales |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module: AudioLanguageModelTrainingWrapper, outputs, batch, batch_idx): |
|
|
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
module.eval() |
|
|
|
print(f"Generating demo") |
|
self.last_demo_step = trainer.global_step |
|
|
|
demo_length_tokens = self.demo_samples // module.model.pretransform.downsampling_ratio |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
print("Getting conditioning") |
|
|
|
for cfg_scale in self.demo_cfg_scales: |
|
|
|
model = module.model |
|
|
|
print(f"Generating demo for cfg scale {cfg_scale}") |
|
fakes = model.generate_audio( |
|
batch_size=self.num_demos, |
|
max_gen_len=demo_length_tokens, |
|
conditioning=self.demo_conditioning, |
|
|
|
cfg_scale=cfg_scale, |
|
temp=1.0, |
|
top_p=0.95 |
|
) |
|
|
|
|
|
fakes = rearrange(fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav' |
|
fakes = fakes / fakes.abs().max() |
|
fakes = fakes.type(torch.float32).clamp(-1, 1).mul(32767).type(torch.int16).cpu() |
|
torchaudio.save(filename, fakes, self.sample_rate) |
|
|
|
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes)) |
|
|
|
trainer.logger.experiment.log(log_dict) |
|
|
|
except Exception as e: |
|
raise e |
|
finally: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
module.train() |