|
import pytorch_lightning as pl |
|
import sys, gc |
|
import random |
|
import torch |
|
import torchaudio |
|
import typing as tp |
|
import wandb |
|
|
|
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image |
|
import auraloss |
|
from ema_pytorch import EMA |
|
from einops import rearrange |
|
from safetensors.torch import save_file |
|
from torch import optim |
|
from torch.nn import functional as F |
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only |
|
|
|
from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler |
|
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper |
|
from ..models.autoencoders import DiffusionAutoencoder |
|
from ..models.diffusion_prior import PriorType |
|
from .autoencoders import create_loss_modules_from_bottleneck |
|
from .losses import AuralossLoss, MSELoss, MultiLoss |
|
from .utils import create_optimizer_from_config, create_scheduler_from_config |
|
|
|
from time import time |
|
|
|
|
|
class Profiler: |
|
|
|
def __init__(self): |
|
self.ticks = [[time(), None]] |
|
|
|
def tick(self, msg): |
|
self.ticks.append([time(), msg]) |
|
|
|
def __repr__(self): |
|
rep = 80 * "=" + "\n" |
|
for i in range(1, len(self.ticks)): |
|
msg = self.ticks[i][1] |
|
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0] |
|
rep += msg + f": {ellapsed*1000:.2f}ms\n" |
|
rep += 80 * "=" + "\n\n\n" |
|
return rep |
|
|
|
class DiffusionUncondTrainingWrapper(pl.LightningModule): |
|
''' |
|
Wrapper for training an unconditional audio diffusion model (like Dance Diffusion). |
|
''' |
|
def __init__( |
|
self, |
|
model: DiffusionModelWrapper, |
|
lr: float = 1e-4, |
|
pre_encoded: bool = False |
|
): |
|
super().__init__() |
|
|
|
self.diffusion = model |
|
|
|
self.diffusion_ema = EMA( |
|
self.diffusion.model, |
|
beta=0.9999, |
|
power=3/4, |
|
update_every=1, |
|
update_after_step=1 |
|
) |
|
|
|
self.lr = lr |
|
|
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
loss_modules = [ |
|
MSELoss("v", |
|
"targets", |
|
weight=1.0, |
|
name="mse_loss" |
|
) |
|
] |
|
|
|
self.losses = MultiLoss(loss_modules) |
|
|
|
self.pre_encoded = pre_encoded |
|
|
|
def configure_optimizers(self): |
|
return optim.Adam([*self.diffusion.parameters()], lr=self.lr) |
|
|
|
def training_step(self, batch, batch_idx): |
|
reals = batch[0] |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
diffusion_input = reals |
|
|
|
loss_info = {} |
|
|
|
if not self.pre_encoded: |
|
loss_info["audio_reals"] = diffusion_input |
|
|
|
if self.diffusion.pretransform is not None: |
|
if not self.pre_encoded: |
|
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad): |
|
diffusion_input = self.diffusion.pretransform.encode(diffusion_input) |
|
else: |
|
|
|
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0: |
|
diffusion_input = diffusion_input / self.diffusion.pretransform.scale |
|
|
|
loss_info["reals"] = diffusion_input |
|
|
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
|
|
|
|
alphas, sigmas = get_alphas_sigmas(t) |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(diffusion_input) |
|
noised_inputs = diffusion_input * alphas + noise * sigmas |
|
targets = noise * alphas - diffusion_input * sigmas |
|
|
|
with torch.cuda.amp.autocast(): |
|
v = self.diffusion(noised_inputs, t) |
|
|
|
loss_info.update({ |
|
"v": v, |
|
"targets": targets |
|
}) |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/std_data': diffusion_input.std(), |
|
} |
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"train/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
self.diffusion_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
|
|
self.diffusion.model = self.diffusion_ema.ema_model |
|
|
|
if use_safetensors: |
|
save_file(self.diffusion.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": self.diffusion.state_dict()}, path) |
|
|
|
class DiffusionUncondDemoCallback(pl.Callback): |
|
def __init__(self, |
|
demo_every=2000, |
|
num_demos=8, |
|
demo_steps=250, |
|
sample_rate=48000 |
|
): |
|
super().__init__() |
|
|
|
self.demo_every = demo_every |
|
self.num_demos = num_demos |
|
self.demo_steps = demo_steps |
|
self.sample_rate = sample_rate |
|
self.last_demo_step = -1 |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx): |
|
|
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
self.last_demo_step = trainer.global_step |
|
|
|
demo_samples = module.diffusion.sample_size |
|
|
|
if module.diffusion.pretransform is not None: |
|
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio |
|
|
|
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device) |
|
|
|
try: |
|
with torch.cuda.amp.autocast(): |
|
fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0) |
|
|
|
if module.diffusion.pretransform is not None: |
|
fakes = module.diffusion.pretransform.decode(fakes) |
|
|
|
|
|
fakes = rearrange(fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'demo_{trainer.global_step:08}.wav' |
|
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, fakes, self.sample_rate) |
|
|
|
log_dict[f'demo'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes)) |
|
|
|
trainer.logger.experiment.log(log_dict) |
|
|
|
del fakes |
|
|
|
except Exception as e: |
|
print(f'{type(e).__name__}: {e}') |
|
finally: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
class DiffusionCondTrainingWrapper(pl.LightningModule): |
|
''' |
|
Wrapper for training a conditional audio diffusion model. |
|
''' |
|
def __init__( |
|
self, |
|
model: ConditionedDiffusionModelWrapper, |
|
lr: float = None, |
|
mask_padding: bool = False, |
|
mask_padding_dropout: float = 0.0, |
|
use_ema: bool = True, |
|
log_loss_info: bool = True, |
|
optimizer_configs: dict = None, |
|
pre_encoded: bool = False, |
|
cfg_dropout_prob = 0.1, |
|
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform", |
|
): |
|
super().__init__() |
|
|
|
self.diffusion = model |
|
|
|
if use_ema: |
|
self.diffusion_ema = EMA( |
|
self.diffusion.model, |
|
beta=0.9999, |
|
power=3/4, |
|
update_every=1, |
|
update_after_step=1, |
|
include_online_model=False |
|
) |
|
else: |
|
self.diffusion_ema = None |
|
|
|
self.mask_padding = mask_padding |
|
self.mask_padding_dropout = mask_padding_dropout |
|
|
|
self.cfg_dropout_prob = cfg_dropout_prob |
|
|
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
self.timestep_sampler = timestep_sampler |
|
|
|
self.diffusion_objective = model.diffusion_objective |
|
|
|
if 'av_loss' in optimizer_configs and optimizer_configs['av_loss']['if_add_av_loss']: |
|
av_align_weight = optimizer_configs['av_loss']['config']['weight'] |
|
self.loss_modules = [ |
|
MSELoss("output", |
|
"targets", |
|
weight=1.0 - av_align_weight, |
|
mask_key="padding_mask" if self.mask_padding else None, |
|
name="mse_loss" |
|
) |
|
] |
|
else: |
|
self.loss_modules = [ |
|
MSELoss("output", |
|
"targets", |
|
weight=1.0, |
|
mask_key="padding_mask" if self.mask_padding else None, |
|
name="mse_loss" |
|
) |
|
] |
|
|
|
|
|
self.losses = MultiLoss(self.loss_modules) |
|
|
|
self.log_loss_info = log_loss_info |
|
|
|
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config" |
|
|
|
if optimizer_configs is None: |
|
optimizer_configs = { |
|
"diffusion": { |
|
"optimizer": { |
|
"type": "Adam", |
|
"config": { |
|
"lr": lr |
|
} |
|
} |
|
} |
|
} |
|
else: |
|
if lr is not None: |
|
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.") |
|
|
|
self.optimizer_configs = optimizer_configs |
|
|
|
self.pre_encoded = pre_encoded |
|
|
|
def configure_optimizers(self): |
|
diffusion_opt_config = self.optimizer_configs['diffusion'] |
|
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters()) |
|
|
|
if "scheduler" in diffusion_opt_config: |
|
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff) |
|
sched_diff_config = { |
|
"scheduler": sched_diff, |
|
"interval": "step" |
|
} |
|
return [opt_diff], [sched_diff_config] |
|
|
|
return [opt_diff] |
|
|
|
def training_step(self, batch, batch_idx): |
|
|
|
|
|
reals, metadata = batch |
|
|
|
p = Profiler() |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
loss_info = {} |
|
|
|
diffusion_input = reals |
|
if not self.pre_encoded: |
|
loss_info["audio_reals"] = diffusion_input |
|
|
|
p.tick("setup") |
|
|
|
with torch.cuda.amp.autocast(): |
|
conditioning = self.diffusion.conditioner(metadata, self.device) |
|
|
|
use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout |
|
|
|
|
|
if use_padding_mask: |
|
padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) |
|
|
|
p.tick("conditioning") |
|
|
|
if self.diffusion.pretransform is not None: |
|
self.diffusion.pretransform.to(self.device) |
|
|
|
if not self.pre_encoded: |
|
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad): |
|
self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad) |
|
|
|
diffusion_input = self.diffusion.pretransform.encode(diffusion_input) |
|
p.tick("pretransform") |
|
|
|
|
|
if use_padding_mask: |
|
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool() |
|
else: |
|
|
|
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0: |
|
diffusion_input = diffusion_input / self.diffusion.pretransform.scale |
|
|
|
if self.timestep_sampler == "uniform": |
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
elif self.timestep_sampler == "logit_normal": |
|
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device)) |
|
|
|
|
|
if self.diffusion_objective == "v": |
|
alphas, sigmas = get_alphas_sigmas(t) |
|
elif self.diffusion_objective == "rectified_flow": |
|
alphas, sigmas = 1-t, t |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(diffusion_input) |
|
noised_inputs = diffusion_input * alphas + noise * sigmas |
|
|
|
if self.diffusion_objective == "v": |
|
targets = noise * alphas - diffusion_input * sigmas |
|
elif self.diffusion_objective == "rectified_flow": |
|
targets = noise - diffusion_input |
|
|
|
p.tick("noise") |
|
|
|
extra_args = {} |
|
|
|
if use_padding_mask: |
|
extra_args["mask"] = padding_masks |
|
|
|
with torch.cuda.amp.autocast(): |
|
p.tick("amp") |
|
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args) |
|
p.tick("diffusion") |
|
|
|
loss_info.update({ |
|
"output": output, |
|
"targets": targets, |
|
"padding_mask": padding_masks if use_padding_mask else None, |
|
}) |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
p.tick("loss") |
|
|
|
if self.log_loss_info: |
|
|
|
num_loss_buckets = 10 |
|
bucket_size = 1 / num_loss_buckets |
|
loss_all = F.mse_loss(output, targets, reduction="none") |
|
|
|
sigmas = rearrange(self.all_gather(sigmas), "b c n -> (b) c n").squeeze() |
|
|
|
|
|
loss_all = rearrange(self.all_gather(loss_all), "b c n -> (b) c n") |
|
|
|
|
|
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)]) |
|
|
|
|
|
debug_log_dict = { |
|
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i]) |
|
} |
|
|
|
self.log_dict(debug_log_dict) |
|
|
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/std_data': diffusion_input.std(), |
|
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr'] |
|
} |
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"train/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
p.tick("log") |
|
|
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
reals, metadata = batch |
|
|
|
p = Profiler() |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
loss_info = {} |
|
|
|
diffusion_input = reals |
|
|
|
if not self.pre_encoded: |
|
loss_info["audio_reals"] = diffusion_input |
|
|
|
p.tick("setup") |
|
with torch.cuda.amp.autocast(): |
|
conditioning = self.diffusion.conditioner(metadata, self.device) |
|
|
|
|
|
use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout |
|
|
|
|
|
if use_padding_mask: |
|
padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) |
|
|
|
p.tick("conditioning") |
|
|
|
if self.diffusion.pretransform is not None: |
|
self.diffusion.pretransform.to(self.device) |
|
|
|
if not self.pre_encoded: |
|
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad): |
|
self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad) |
|
|
|
diffusion_input = self.diffusion.pretransform.encode(diffusion_input) |
|
p.tick("pretransform") |
|
|
|
|
|
if use_padding_mask: |
|
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool() |
|
else: |
|
|
|
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0: |
|
diffusion_input = diffusion_input / self.diffusion.pretransform.scale |
|
|
|
if self.timestep_sampler == "uniform": |
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
elif self.timestep_sampler == "logit_normal": |
|
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device)) |
|
|
|
|
|
if self.diffusion_objective == "v": |
|
alphas, sigmas = get_alphas_sigmas(t) |
|
elif self.diffusion_objective == "rectified_flow": |
|
alphas, sigmas = 1-t, t |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(diffusion_input) |
|
noised_inputs = diffusion_input * alphas + noise * sigmas |
|
|
|
if self.diffusion_objective == "v": |
|
targets = noise * alphas - diffusion_input * sigmas |
|
elif self.diffusion_objective == "rectified_flow": |
|
targets = noise - diffusion_input |
|
|
|
p.tick("noise") |
|
|
|
extra_args = {} |
|
|
|
if use_padding_mask: |
|
extra_args["mask"] = padding_masks |
|
|
|
with torch.cuda.amp.autocast(): |
|
p.tick("amp") |
|
|
|
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args) |
|
p.tick("diffusion") |
|
|
|
loss_info.update({ |
|
"output": output, |
|
"targets": targets, |
|
"padding_mask": padding_masks if use_padding_mask else None, |
|
}) |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
p.tick("loss") |
|
|
|
if self.log_loss_info: |
|
|
|
num_loss_buckets = 10 |
|
bucket_size = 1 / num_loss_buckets |
|
loss_all = F.mse_loss(output, targets, reduction="none") |
|
|
|
|
|
|
|
sigmas = rearrange(self.all_gather(sigmas), "b c n -> (b) c n").squeeze() |
|
|
|
|
|
|
|
loss_all = rearrange(self.all_gather(loss_all), "b c n -> (b) c n") |
|
|
|
|
|
|
|
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)]) |
|
|
|
|
|
debug_log_dict = { |
|
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i]) |
|
} |
|
|
|
self.log_dict(debug_log_dict) |
|
|
|
|
|
log_dict = { |
|
'valid/loss': loss.detach(), |
|
'valid/std_data': diffusion_input.std(), |
|
'valid/lr': self.trainer.optimizers[0].param_groups[0]['lr'] |
|
} |
|
|
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"valid/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
|
|
|
|
p.tick("log") |
|
|
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
if self.diffusion_ema is not None: |
|
self.diffusion_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
if self.diffusion_ema is not None: |
|
self.diffusion.model = self.diffusion_ema.ema_model |
|
|
|
if use_safetensors: |
|
save_file(self.diffusion.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": self.diffusion.state_dict()}, path) |
|
|
|
class DiffusionCondDemoCallback(pl.Callback): |
|
def __init__(self, |
|
demo_every=2000, |
|
num_demos=8, |
|
sample_size=65536, |
|
demo_steps=250, |
|
sample_rate=48000, |
|
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = {}, |
|
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7], |
|
demo_cond_from_batch: bool = False, |
|
display_audio_cond: bool = False |
|
): |
|
super().__init__() |
|
|
|
self.demo_every = demo_every |
|
self.num_demos = num_demos |
|
self.demo_samples = sample_size |
|
self.demo_steps = demo_steps |
|
self.sample_rate = sample_rate |
|
self.last_demo_step = -1 |
|
self.demo_conditioning = demo_conditioning |
|
self.demo_cfg_scales = demo_cfg_scales |
|
|
|
|
|
self.demo_cond_from_batch = demo_cond_from_batch |
|
|
|
|
|
self.display_audio_cond = display_audio_cond |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx): |
|
|
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
module.eval() |
|
|
|
print(f"Generating demo") |
|
self.last_demo_step = trainer.global_step |
|
|
|
demo_samples = self.demo_samples |
|
|
|
demo_cond = self.demo_conditioning |
|
|
|
if self.demo_cond_from_batch: |
|
|
|
demo_cond = batch[1][:self.num_demos] |
|
|
|
if module.diffusion.pretransform is not None: |
|
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio |
|
|
|
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device) |
|
|
|
try: |
|
print("Getting conditioning") |
|
with torch.cuda.amp.autocast(): |
|
conditioning = module.diffusion.conditioner(demo_cond, module.device) |
|
|
|
|
|
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning) |
|
|
|
log_dict = {} |
|
|
|
if self.display_audio_cond: |
|
audio_inputs = torch.cat([cond["audio"] for cond in demo_cond], dim=0) |
|
audio_inputs = rearrange(audio_inputs, 'b d n -> d (b n)') |
|
|
|
filename = f'demo_audio_cond_{trainer.global_step:08}.wav' |
|
audio_inputs = audio_inputs.to(torch.float32).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, audio_inputs, self.sample_rate) |
|
log_dict[f'demo_audio_cond'] = wandb.Audio(filename, sample_rate=self.sample_rate, caption="Audio conditioning") |
|
log_dict[f"demo_audio_cond_melspec_left"] = wandb.Image(audio_spectrogram_image(audio_inputs)) |
|
trainer.logger.experiment.log(log_dict) |
|
|
|
for cfg_scale in self.demo_cfg_scales: |
|
|
|
print(f"Generating demo for cfg scale {cfg_scale}") |
|
|
|
with torch.cuda.amp.autocast(): |
|
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model |
|
|
|
if module.diffusion_objective == "v": |
|
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True) |
|
elif module.diffusion_objective == "rectified_flow": |
|
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True) |
|
|
|
if module.diffusion.pretransform is not None: |
|
fakes = module.diffusion.pretransform.decode(fakes) |
|
|
|
|
|
fakes = rearrange(fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav' |
|
fakes = fakes.div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, fakes, self.sample_rate) |
|
|
|
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes)) |
|
|
|
trainer.logger.experiment.log(log_dict) |
|
|
|
del fakes |
|
|
|
except Exception as e: |
|
raise e |
|
finally: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
module.train() |
|
|
|
class DiffusionCondInpaintTrainingWrapper(pl.LightningModule): |
|
''' |
|
Wrapper for training a conditional audio diffusion model. |
|
''' |
|
def __init__( |
|
self, |
|
model: ConditionedDiffusionModelWrapper, |
|
lr: float = 1e-4, |
|
max_mask_segments = 10, |
|
log_loss_info: bool = False, |
|
optimizer_configs: dict = None, |
|
use_ema: bool = True, |
|
pre_encoded: bool = False, |
|
cfg_dropout_prob = 0.1, |
|
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform", |
|
): |
|
super().__init__() |
|
|
|
self.diffusion = model |
|
|
|
self.use_ema = use_ema |
|
|
|
if self.use_ema: |
|
self.diffusion_ema = EMA( |
|
self.diffusion.model, |
|
beta=0.9999, |
|
power=3/4, |
|
update_every=1, |
|
update_after_step=1, |
|
include_online_model=False |
|
) |
|
else: |
|
self.diffusion_ema = None |
|
|
|
self.cfg_dropout_prob = cfg_dropout_prob |
|
|
|
self.lr = lr |
|
self.max_mask_segments = max_mask_segments |
|
|
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
self.timestep_sampler = timestep_sampler |
|
|
|
self.diffusion_objective = model.diffusion_objective |
|
|
|
self.loss_modules = [ |
|
MSELoss("output", |
|
"targets", |
|
weight=1.0, |
|
name="mse_loss" |
|
) |
|
] |
|
|
|
self.losses = MultiLoss(self.loss_modules) |
|
|
|
self.log_loss_info = log_loss_info |
|
|
|
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config" |
|
|
|
if optimizer_configs is None: |
|
optimizer_configs = { |
|
"diffusion": { |
|
"optimizer": { |
|
"type": "Adam", |
|
"config": { |
|
"lr": lr |
|
} |
|
} |
|
} |
|
} |
|
else: |
|
if lr is not None: |
|
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.") |
|
|
|
self.optimizer_configs = optimizer_configs |
|
|
|
self.pre_encoded = pre_encoded |
|
|
|
def configure_optimizers(self): |
|
diffusion_opt_config = self.optimizer_configs['diffusion'] |
|
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters()) |
|
|
|
if "scheduler" in diffusion_opt_config: |
|
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff) |
|
sched_diff_config = { |
|
"scheduler": sched_diff, |
|
"interval": "step" |
|
} |
|
return [opt_diff], [sched_diff_config] |
|
|
|
return [opt_diff] |
|
|
|
def random_mask(self, sequence, max_mask_length): |
|
b, _, sequence_length = sequence.size() |
|
|
|
|
|
masks = [] |
|
|
|
for i in range(b): |
|
mask_type = random.randint(0, 2) |
|
|
|
if mask_type == 0: |
|
num_segments = random.randint(1, self.max_mask_segments) |
|
max_segment_length = max_mask_length // num_segments |
|
|
|
segment_lengths = random.sample(range(1, max_segment_length + 1), num_segments) |
|
|
|
mask = torch.ones((1, 1, sequence_length)) |
|
for length in segment_lengths: |
|
mask_start = random.randint(0, sequence_length - length) |
|
mask[:, :, mask_start:mask_start + length] = 0 |
|
|
|
elif mask_type == 1: |
|
mask = torch.zeros((1, 1, sequence_length)) |
|
|
|
elif mask_type == 2: |
|
mask = torch.ones((1, 1, sequence_length)) |
|
mask_length = random.randint(1, max_mask_length) |
|
mask[:, :, -mask_length:] = 0 |
|
|
|
mask = mask.to(sequence.device) |
|
masks.append(mask) |
|
|
|
|
|
mask = torch.cat(masks, dim=0).to(sequence.device) |
|
|
|
|
|
masked_sequence = sequence * mask |
|
|
|
return masked_sequence, mask |
|
|
|
def training_step(self, batch, batch_idx): |
|
reals, metadata = batch |
|
|
|
p = Profiler() |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
loss_info = {} |
|
|
|
diffusion_input = reals |
|
|
|
if not self.pre_encoded: |
|
loss_info["audio_reals"] = diffusion_input |
|
|
|
p.tick("setup") |
|
|
|
with torch.cuda.amp.autocast(): |
|
conditioning = self.diffusion.conditioner(metadata, self.device) |
|
|
|
p.tick("conditioning") |
|
|
|
if self.diffusion.pretransform is not None: |
|
self.diffusion.pretransform.to(self.device) |
|
|
|
if not self.pre_encoded: |
|
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad): |
|
diffusion_input = self.diffusion.pretransform.encode(diffusion_input) |
|
p.tick("pretransform") |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0: |
|
diffusion_input = diffusion_input / self.diffusion.pretransform.scale |
|
|
|
|
|
max_mask_length = diffusion_input.shape[2] |
|
|
|
|
|
masked_input, mask = self.random_mask(diffusion_input, max_mask_length) |
|
|
|
conditioning['inpaint_mask'] = [mask] |
|
conditioning['inpaint_masked_input'] = [masked_input] |
|
|
|
if self.timestep_sampler == "uniform": |
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
elif self.timestep_sampler == "logit_normal": |
|
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device)) |
|
|
|
|
|
if self.diffusion_objective == "v": |
|
alphas, sigmas = get_alphas_sigmas(t) |
|
elif self.diffusion_objective == "rectified_flow": |
|
alphas, sigmas = 1-t, t |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(diffusion_input) |
|
noised_inputs = diffusion_input * alphas + noise * sigmas |
|
|
|
if self.diffusion_objective == "v": |
|
targets = noise * alphas - diffusion_input * sigmas |
|
elif self.diffusion_objective == "rectified_flow": |
|
targets = noise - diffusion_input |
|
|
|
p.tick("noise") |
|
|
|
extra_args = {} |
|
|
|
with torch.cuda.amp.autocast(): |
|
p.tick("amp") |
|
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args) |
|
p.tick("diffusion") |
|
|
|
loss_info.update({ |
|
"output": output, |
|
"targets": targets, |
|
}) |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
if self.log_loss_info: |
|
|
|
num_loss_buckets = 10 |
|
bucket_size = 1 / num_loss_buckets |
|
loss_all = F.mse_loss(output, targets, reduction="none") |
|
|
|
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze() |
|
|
|
|
|
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n") |
|
|
|
|
|
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)]) |
|
|
|
|
|
debug_log_dict = { |
|
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i]) |
|
} |
|
|
|
self.log_dict(debug_log_dict) |
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/std_data': diffusion_input.std(), |
|
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr'] |
|
} |
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"train/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
p.tick("log") |
|
|
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
if self.diffusion_ema is not None: |
|
self.diffusion_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
if self.diffusion_ema is not None: |
|
self.diffusion.model = self.diffusion_ema.ema_model |
|
|
|
if use_safetensors: |
|
save_file(self.diffusion.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": self.diffusion.state_dict()}, path) |
|
|
|
class DiffusionCondInpaintDemoCallback(pl.Callback): |
|
def __init__( |
|
self, |
|
demo_dl, |
|
demo_every=2000, |
|
demo_steps=250, |
|
sample_size=65536, |
|
sample_rate=48000, |
|
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7] |
|
): |
|
super().__init__() |
|
self.demo_every = demo_every |
|
self.demo_steps = demo_steps |
|
self.demo_samples = sample_size |
|
self.demo_dl = iter(demo_dl) |
|
self.sample_rate = sample_rate |
|
self.demo_cfg_scales = demo_cfg_scales |
|
self.last_demo_step = -1 |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx): |
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
self.last_demo_step = trainer.global_step |
|
|
|
try: |
|
log_dict = {} |
|
|
|
demo_reals, metadata = next(self.demo_dl) |
|
|
|
|
|
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1: |
|
demo_reals = demo_reals[0] |
|
|
|
demo_reals = demo_reals.to(module.device) |
|
|
|
if not module.pre_encoded: |
|
|
|
log_dict[f'demo_reals_melspec_left'] = wandb.Image(audio_spectrogram_image(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu())) |
|
|
|
|
|
if module.diffusion.pretransform is not None: |
|
module.diffusion.pretransform.to(module.device) |
|
with torch.cuda.amp.autocast(): |
|
demo_reals = module.diffusion.pretransform.encode(demo_reals) |
|
|
|
demo_samples = demo_reals.shape[2] |
|
|
|
|
|
conditioning = module.diffusion.conditioner(metadata, module.device) |
|
|
|
masked_input, mask = module.random_mask(demo_reals, demo_reals.shape[2]) |
|
|
|
conditioning['inpaint_mask'] = [mask] |
|
conditioning['inpaint_masked_input'] = [masked_input] |
|
|
|
if module.diffusion.pretransform is not None: |
|
log_dict[f'demo_masked_input'] = wandb.Image(tokens_spectrogram_image(masked_input.cpu())) |
|
else: |
|
log_dict[f'demo_masked_input'] = wandb.Image(audio_spectrogram_image(rearrange(masked_input, "b c t -> c (b t)").mul(32767).to(torch.int16).cpu())) |
|
|
|
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning) |
|
|
|
noise = torch.randn([demo_reals.shape[0], module.diffusion.io_channels, demo_samples]).to(module.device) |
|
|
|
trainer.logger.experiment.log(log_dict) |
|
|
|
for cfg_scale in self.demo_cfg_scales: |
|
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model |
|
print(f"Generating demo for cfg scale {cfg_scale}") |
|
|
|
if module.diffusion_objective == "v": |
|
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True) |
|
elif module.diffusion_objective == "rectified_flow": |
|
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True) |
|
|
|
if module.diffusion.pretransform is not None: |
|
with torch.cuda.amp.autocast(): |
|
fakes = module.diffusion.pretransform.decode(fakes) |
|
|
|
|
|
fakes = rearrange(fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav' |
|
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, fakes, self.sample_rate) |
|
|
|
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes)) |
|
|
|
trainer.logger.experiment.log(log_dict) |
|
except Exception as e: |
|
print(f'{type(e).__name__}: {e}') |
|
raise e |
|
|
|
class DiffusionAutoencoderTrainingWrapper(pl.LightningModule): |
|
''' |
|
Wrapper for training a diffusion autoencoder |
|
''' |
|
def __init__( |
|
self, |
|
model: DiffusionAutoencoder, |
|
lr: float = 1e-4, |
|
ema_copy = None, |
|
use_reconstruction_loss: bool = False |
|
): |
|
super().__init__() |
|
|
|
self.diffae = model |
|
|
|
self.diffae_ema = EMA( |
|
self.diffae, |
|
ema_model=ema_copy, |
|
beta=0.9999, |
|
power=3/4, |
|
update_every=1, |
|
update_after_step=1, |
|
include_online_model=False |
|
) |
|
|
|
self.lr = lr |
|
|
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
loss_modules = [ |
|
MSELoss("v", |
|
"targets", |
|
weight=1.0, |
|
name="mse_loss" |
|
) |
|
] |
|
|
|
if model.bottleneck is not None: |
|
|
|
loss_modules += create_loss_modules_from_bottleneck(model.bottleneck, {}) |
|
|
|
self.use_reconstruction_loss = use_reconstruction_loss |
|
|
|
if use_reconstruction_loss: |
|
scales = [2048, 1024, 512, 256, 128, 64, 32] |
|
hop_sizes = [] |
|
win_lengths = [] |
|
overlap = 0.75 |
|
for s in scales: |
|
hop_sizes.append(int(s * (1 - overlap))) |
|
win_lengths.append(s) |
|
|
|
sample_rate = model.sample_rate |
|
|
|
stft_loss_args = { |
|
"fft_sizes": scales, |
|
"hop_sizes": hop_sizes, |
|
"win_lengths": win_lengths, |
|
"perceptual_weighting": True |
|
} |
|
|
|
out_channels = model.out_channels |
|
|
|
if model.pretransform is not None: |
|
out_channels = model.pretransform.io_channels |
|
|
|
if out_channels == 2: |
|
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args) |
|
else: |
|
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args) |
|
|
|
loss_modules.append( |
|
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), |
|
) |
|
|
|
self.losses = MultiLoss(loss_modules) |
|
|
|
def configure_optimizers(self): |
|
return optim.Adam([*self.diffae.parameters()], lr=self.lr) |
|
|
|
def training_step(self, batch, batch_idx): |
|
reals = batch[0] |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
loss_info = {} |
|
|
|
loss_info["audio_reals"] = reals |
|
|
|
if self.diffae.pretransform is not None: |
|
with torch.no_grad(): |
|
reals = self.diffae.pretransform.encode(reals) |
|
|
|
loss_info["reals"] = reals |
|
|
|
|
|
latents, encoder_info = self.diffae.encode(reals, return_info=True, skip_pretransform=True) |
|
|
|
loss_info["latents"] = latents |
|
loss_info.update(encoder_info) |
|
|
|
if self.diffae.decoder is not None: |
|
latents = self.diffae.decoder(latents) |
|
|
|
|
|
if latents.shape[2] != reals.shape[2]: |
|
latents = F.interpolate(latents, size=reals.shape[2], mode='nearest') |
|
|
|
loss_info["latents_upsampled"] = latents |
|
|
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
|
|
|
|
alphas, sigmas = get_alphas_sigmas(t) |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(reals) |
|
noised_reals = reals * alphas + noise * sigmas |
|
targets = noise * alphas - reals * sigmas |
|
|
|
with torch.cuda.amp.autocast(): |
|
v = self.diffae.diffusion(noised_reals, t, input_concat_cond=latents) |
|
|
|
loss_info.update({ |
|
"v": v, |
|
"targets": targets |
|
}) |
|
|
|
if self.use_reconstruction_loss: |
|
pred = noised_reals * alphas - v * sigmas |
|
|
|
loss_info["pred"] = pred |
|
|
|
if self.diffae.pretransform is not None: |
|
pred = self.diffae.pretransform.decode(pred) |
|
loss_info["audio_pred"] = pred |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/std_data': reals.std(), |
|
'train/latent_std': latents.std(), |
|
} |
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"train/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
self.diffae_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
|
|
model = self.diffae_ema.ema_model |
|
|
|
if use_safetensors: |
|
save_file(model.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": model.state_dict()}, path) |
|
|
|
class DiffusionAutoencoderDemoCallback(pl.Callback): |
|
def __init__( |
|
self, |
|
demo_dl, |
|
demo_every=2000, |
|
demo_steps=250, |
|
sample_size=65536, |
|
sample_rate=48000 |
|
): |
|
super().__init__() |
|
self.demo_every = demo_every |
|
self.demo_steps = demo_steps |
|
self.demo_samples = sample_size |
|
self.demo_dl = iter(demo_dl) |
|
self.sample_rate = sample_rate |
|
self.last_demo_step = -1 |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx): |
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
self.last_demo_step = trainer.global_step |
|
|
|
demo_reals, _ = next(self.demo_dl) |
|
|
|
|
|
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1: |
|
demo_reals = demo_reals[0] |
|
|
|
encoder_input = demo_reals |
|
|
|
encoder_input = encoder_input.to(module.device) |
|
|
|
demo_reals = demo_reals.to(module.device) |
|
|
|
with torch.no_grad() and torch.cuda.amp.autocast(): |
|
latents = module.diffae_ema.ema_model.encode(encoder_input).float() |
|
fakes = module.diffae_ema.ema_model.decode(latents, steps=self.demo_steps) |
|
|
|
|
|
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n') |
|
|
|
|
|
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'recon_{trainer.global_step:08}.wav' |
|
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, reals_fakes, self.sample_rate) |
|
|
|
log_dict[f'recon'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents) |
|
log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents)) |
|
|
|
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes)) |
|
|
|
if module.diffae_ema.ema_model.pretransform is not None: |
|
with torch.no_grad() and torch.cuda.amp.autocast(): |
|
initial_latents = module.diffae_ema.ema_model.pretransform.encode(encoder_input) |
|
first_stage_fakes = module.diffae_ema.ema_model.pretransform.decode(initial_latents) |
|
first_stage_fakes = rearrange(first_stage_fakes, 'b d n -> d (b n)') |
|
first_stage_fakes = first_stage_fakes.to(torch.float32).mul(32767).to(torch.int16).cpu() |
|
first_stage_filename = f'first_stage_{trainer.global_step:08}.wav' |
|
torchaudio.save(first_stage_filename, first_stage_fakes, self.sample_rate) |
|
|
|
log_dict[f'first_stage_latents'] = wandb.Image(tokens_spectrogram_image(initial_latents)) |
|
|
|
log_dict[f'first_stage'] = wandb.Audio(first_stage_filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'First Stage Reconstructed') |
|
|
|
log_dict[f'first_stage_melspec_left'] = wandb.Image(audio_spectrogram_image(first_stage_fakes)) |
|
|
|
|
|
trainer.logger.experiment.log(log_dict) |
|
|
|
def create_source_mixture(reals, num_sources=2): |
|
|
|
source = torch.zeros_like(reals) |
|
for i in range(reals.shape[0]): |
|
sources_added = 0 |
|
|
|
js = list(range(reals.shape[0])) |
|
random.shuffle(js) |
|
for j in js: |
|
if i == j or (i != j and sources_added < num_sources): |
|
|
|
seq_len = reals.shape[2] |
|
offset = random.randint(0, seq_len-1) |
|
source[i, :, offset:] += reals[j, :, :-offset] |
|
if i == j: |
|
|
|
new_reals = torch.zeros_like(reals[i]) |
|
new_reals[:, offset:] = reals[i, :, :-offset] |
|
reals[i] = new_reals |
|
sources_added += 1 |
|
|
|
return source |
|
|
|
class DiffusionPriorTrainingWrapper(pl.LightningModule): |
|
''' |
|
Wrapper for training a diffusion prior for inverse problems |
|
Prior types: |
|
mono_stereo: The prior is conditioned on a mono version of the audio to generate a stereo version |
|
''' |
|
def __init__( |
|
self, |
|
model: ConditionedDiffusionModelWrapper, |
|
lr: float = 1e-4, |
|
ema_copy = None, |
|
prior_type: PriorType = PriorType.MonoToStereo, |
|
use_reconstruction_loss: bool = False, |
|
log_loss_info: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.diffusion = model |
|
|
|
self.diffusion_ema = EMA( |
|
self.diffusion, |
|
ema_model=ema_copy, |
|
beta=0.9999, |
|
power=3/4, |
|
update_every=1, |
|
update_after_step=1, |
|
include_online_model=False |
|
) |
|
|
|
self.lr = lr |
|
|
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
self.log_loss_info = log_loss_info |
|
|
|
loss_modules = [ |
|
MSELoss("v", |
|
"targets", |
|
weight=1.0, |
|
name="mse_loss" |
|
) |
|
] |
|
|
|
self.use_reconstruction_loss = use_reconstruction_loss |
|
|
|
if use_reconstruction_loss: |
|
scales = [2048, 1024, 512, 256, 128, 64, 32] |
|
hop_sizes = [] |
|
win_lengths = [] |
|
overlap = 0.75 |
|
for s in scales: |
|
hop_sizes.append(int(s * (1 - overlap))) |
|
win_lengths.append(s) |
|
|
|
sample_rate = model.sample_rate |
|
|
|
stft_loss_args = { |
|
"fft_sizes": scales, |
|
"hop_sizes": hop_sizes, |
|
"win_lengths": win_lengths, |
|
"perceptual_weighting": True |
|
} |
|
|
|
out_channels = model.io_channels |
|
|
|
self.audio_out_channels = out_channels |
|
|
|
if model.pretransform is not None: |
|
out_channels = model.pretransform.io_channels |
|
|
|
if self.audio_out_channels == 2: |
|
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args) |
|
self.lrstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args) |
|
|
|
|
|
self.loss_modules += [ |
|
AuralossLoss(self.lrstft, 'audio_reals_left', 'pred_left', name='stft_loss_left', weight=0.05), |
|
AuralossLoss(self.lrstft, 'audio_reals_right', 'pred_right', name='stft_loss_right', weight=0.05), |
|
] |
|
|
|
else: |
|
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args) |
|
|
|
self.loss_modules.append( |
|
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), |
|
) |
|
|
|
self.losses = MultiLoss(loss_modules) |
|
|
|
self.prior_type = prior_type |
|
|
|
def configure_optimizers(self): |
|
return optim.Adam([*self.diffusion.parameters()], lr=self.lr) |
|
|
|
def training_step(self, batch, batch_idx): |
|
reals, metadata = batch |
|
|
|
if reals.ndim == 4 and reals.shape[0] == 1: |
|
reals = reals[0] |
|
|
|
loss_info = {} |
|
|
|
loss_info["audio_reals"] = reals |
|
|
|
if self.prior_type == PriorType.MonoToStereo: |
|
source = reals.mean(dim=1, keepdim=True).repeat(1, reals.shape[1], 1).to(self.device) |
|
loss_info["audio_reals_mono"] = source |
|
else: |
|
raise ValueError(f"Unknown prior type {self.prior_type}") |
|
|
|
if self.diffusion.pretransform is not None: |
|
with torch.no_grad(): |
|
reals = self.diffusion.pretransform.encode(reals) |
|
|
|
if self.prior_type in [PriorType.MonoToStereo]: |
|
source = self.diffusion.pretransform.encode(source) |
|
|
|
if self.diffusion.conditioner is not None: |
|
with torch.cuda.amp.autocast(): |
|
conditioning = self.diffusion.conditioner(metadata, self.device) |
|
else: |
|
conditioning = {} |
|
|
|
loss_info["reals"] = reals |
|
|
|
|
|
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device) |
|
|
|
|
|
alphas, sigmas = get_alphas_sigmas(t) |
|
|
|
|
|
alphas = alphas[:, None, None] |
|
sigmas = sigmas[:, None, None] |
|
noise = torch.randn_like(reals) |
|
noised_reals = reals * alphas + noise * sigmas |
|
targets = noise * alphas - reals * sigmas |
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
conditioning['source'] = [source] |
|
|
|
v = self.diffusion(noised_reals, t, cond=conditioning, cfg_dropout_prob = 0.1) |
|
|
|
loss_info.update({ |
|
"v": v, |
|
"targets": targets |
|
}) |
|
|
|
if self.use_reconstruction_loss: |
|
pred = noised_reals * alphas - v * sigmas |
|
|
|
loss_info["pred"] = pred |
|
|
|
if self.diffusion.pretransform is not None: |
|
pred = self.diffusion.pretransform.decode(pred) |
|
loss_info["audio_pred"] = pred |
|
|
|
if self.audio_out_channels == 2: |
|
loss_info["pred_left"] = pred[:, 0:1, :] |
|
loss_info["pred_right"] = pred[:, 1:2, :] |
|
loss_info["audio_reals_left"] = loss_info["audio_reals"][:, 0:1, :] |
|
loss_info["audio_reals_right"] = loss_info["audio_reals"][:, 1:2, :] |
|
|
|
loss, losses = self.losses(loss_info) |
|
|
|
if self.log_loss_info: |
|
|
|
num_loss_buckets = 10 |
|
bucket_size = 1 / num_loss_buckets |
|
loss_all = F.mse_loss(v, targets, reduction="none") |
|
|
|
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze() |
|
|
|
|
|
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n") |
|
|
|
|
|
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)]) |
|
|
|
|
|
debug_log_dict = { |
|
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i]) |
|
} |
|
|
|
self.log_dict(debug_log_dict) |
|
|
|
log_dict = { |
|
'train/loss': loss.detach(), |
|
'train/std_data': reals.std() |
|
} |
|
|
|
for loss_name, loss_value in losses.items(): |
|
log_dict[f"train/{loss_name}"] = loss_value.detach() |
|
|
|
self.log_dict(log_dict, prog_bar=True, on_step=True) |
|
return loss |
|
|
|
def on_before_zero_grad(self, *args, **kwargs): |
|
self.diffusion_ema.update() |
|
|
|
def export_model(self, path, use_safetensors=False): |
|
|
|
|
|
model = self.diffusion |
|
|
|
if use_safetensors: |
|
save_file(model.state_dict(), path) |
|
else: |
|
torch.save({"state_dict": model.state_dict()}, path) |
|
|
|
class DiffusionPriorDemoCallback(pl.Callback): |
|
def __init__( |
|
self, |
|
demo_dl, |
|
demo_every=2000, |
|
demo_steps=250, |
|
sample_size=65536, |
|
sample_rate=48000 |
|
): |
|
super().__init__() |
|
self.demo_every = demo_every |
|
self.demo_steps = demo_steps |
|
self.demo_samples = sample_size |
|
self.demo_dl = iter(demo_dl) |
|
self.sample_rate = sample_rate |
|
self.last_demo_step = -1 |
|
|
|
@rank_zero_only |
|
@torch.no_grad() |
|
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx): |
|
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step: |
|
return |
|
|
|
self.last_demo_step = trainer.global_step |
|
|
|
demo_reals, metadata = next(self.demo_dl) |
|
|
|
|
|
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1: |
|
demo_reals = demo_reals[0] |
|
|
|
demo_reals = demo_reals.to(module.device) |
|
|
|
encoder_input = demo_reals |
|
|
|
if module.diffusion.conditioner is not None: |
|
with torch.cuda.amp.autocast(): |
|
conditioning_tensors = module.diffusion.conditioner(metadata, module.device) |
|
|
|
else: |
|
conditioning_tensors = {} |
|
|
|
|
|
with torch.no_grad() and torch.cuda.amp.autocast(): |
|
if module.prior_type == PriorType.MonoToStereo and encoder_input.shape[1] > 1: |
|
source = encoder_input.mean(dim=1, keepdim=True).repeat(1, encoder_input.shape[1], 1).to(module.device) |
|
|
|
if module.diffusion.pretransform is not None: |
|
encoder_input = module.diffusion.pretransform.encode(encoder_input) |
|
source_input = module.diffusion.pretransform.encode(source) |
|
else: |
|
source_input = source |
|
|
|
conditioning_tensors['source'] = [source_input] |
|
|
|
fakes = sample(module.diffusion_ema.model, torch.randn_like(encoder_input), self.demo_steps, 0, cond=conditioning_tensors) |
|
|
|
if module.diffusion.pretransform is not None: |
|
fakes = module.diffusion.pretransform.decode(fakes) |
|
|
|
|
|
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n') |
|
|
|
|
|
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)') |
|
|
|
log_dict = {} |
|
|
|
filename = f'recon_{trainer.global_step:08}.wav' |
|
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, reals_fakes, self.sample_rate) |
|
|
|
log_dict[f'recon'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Reconstructed') |
|
|
|
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes)) |
|
|
|
|
|
filename = f'source_{trainer.global_step:08}.wav' |
|
source = rearrange(source, 'b d n -> d (b n)') |
|
source = source.to(torch.float32).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save(filename, source, self.sample_rate) |
|
|
|
log_dict[f'source'] = wandb.Audio(filename, |
|
sample_rate=self.sample_rate, |
|
caption=f'Source') |
|
|
|
log_dict[f'source_melspec_left'] = wandb.Image(audio_spectrogram_image(source)) |
|
|
|
trainer.logger.experiment.log(log_dict) |