|
"""The 1D discrete wavelet transform for PyTorch.""" |
|
|
|
from einops import rearrange |
|
import pywt |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from typing import Literal |
|
|
|
|
|
def get_filter_bank(wavelet): |
|
filt = torch.tensor(pywt.Wavelet(wavelet).filter_bank) |
|
if wavelet.startswith("bior") and torch.all(filt[:, 0] == 0): |
|
filt = filt[:, 1:] |
|
return filt |
|
|
|
class WaveletEncode1d(nn.Module): |
|
def __init__(self, |
|
channels, |
|
levels, |
|
wavelet: Literal["bior2.2", "bior2.4", "bior2.6", "bior2.8", "bior4.4", "bior6.8"] = "bior4.4"): |
|
super().__init__() |
|
self.wavelet = wavelet |
|
self.channels = channels |
|
self.levels = levels |
|
filt = get_filter_bank(wavelet) |
|
assert filt.shape[-1] % 2 == 1 |
|
kernel = filt[:2, None] |
|
kernel = torch.flip(kernel, dims=(-1,)) |
|
index_i = torch.repeat_interleave(torch.arange(2), channels) |
|
index_j = torch.tile(torch.arange(channels), (2,)) |
|
kernel_final = torch.zeros(channels * 2, channels, filt.shape[-1]) |
|
kernel_final[index_i * channels + index_j, index_j] = kernel[index_i, 0] |
|
self.register_buffer("kernel", kernel_final) |
|
|
|
def forward(self, x): |
|
for i in range(self.levels): |
|
low, rest = x[:, : self.channels], x[:, self.channels :] |
|
pad = self.kernel.shape[-1] // 2 |
|
low = F.pad(low, (pad, pad), "reflect") |
|
low = F.conv1d(low, self.kernel, stride=2) |
|
rest = rearrange( |
|
rest, "n (c c2) (l l2) -> n (c l2 c2) l", l2=2, c2=self.channels |
|
) |
|
x = torch.cat([low, rest], dim=1) |
|
return x |
|
|
|
|
|
class WaveletDecode1d(nn.Module): |
|
def __init__(self, |
|
channels, |
|
levels, |
|
wavelet: Literal["bior2.2", "bior2.4", "bior2.6", "bior2.8", "bior4.4", "bior6.8"] = "bior4.4"): |
|
super().__init__() |
|
self.wavelet = wavelet |
|
self.channels = channels |
|
self.levels = levels |
|
filt = get_filter_bank(wavelet) |
|
assert filt.shape[-1] % 2 == 1 |
|
kernel = filt[2:, None] |
|
index_i = torch.repeat_interleave(torch.arange(2), channels) |
|
index_j = torch.tile(torch.arange(channels), (2,)) |
|
kernel_final = torch.zeros(channels * 2, channels, filt.shape[-1]) |
|
kernel_final[index_i * channels + index_j, index_j] = kernel[index_i, 0] |
|
self.register_buffer("kernel", kernel_final) |
|
|
|
def forward(self, x): |
|
for i in range(self.levels): |
|
low, rest = x[:, : self.channels * 2], x[:, self.channels * 2 :] |
|
pad = self.kernel.shape[-1] // 2 + 2 |
|
low = rearrange(low, "n (l2 c) l -> n c (l l2)", l2=2) |
|
low = F.pad(low, (pad, pad), "reflect") |
|
low = rearrange(low, "n c (l l2) -> n (l2 c) l", l2=2) |
|
low = F.conv_transpose1d( |
|
low, self.kernel, stride=2, padding=self.kernel.shape[-1] // 2 |
|
) |
|
low = low[..., pad - 1 : -pad] |
|
rest = rearrange( |
|
rest, "n (c l2 c2) l -> n (c c2) (l l2)", l2=2, c2=self.channels |
|
) |
|
x = torch.cat([low, rest], dim=1) |
|
return x |