|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from functools import reduce |
|
import typing as tp |
|
from einops import rearrange |
|
from audiotools import AudioSignal, STFTParams |
|
from dac.model.discriminator import WNConv1d, WNConv2d |
|
|
|
def get_hinge_losses(score_real, score_fake): |
|
gen_loss = -score_fake.mean() |
|
dis_loss = torch.relu(1 - score_real).mean() + torch.relu(1 + score_fake).mean() |
|
return dis_loss, gen_loss |
|
|
|
class EncodecDiscriminator(nn.Module): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__() |
|
|
|
from encodec.msstftd import MultiScaleSTFTDiscriminator |
|
|
|
self.discriminators = MultiScaleSTFTDiscriminator(*args, **kwargs) |
|
|
|
def forward(self, x): |
|
logits, features = self.discriminators(x) |
|
return logits, features |
|
|
|
def loss(self, x, y): |
|
feature_matching_distance = 0. |
|
logits_true, feature_true = self.forward(x) |
|
logits_fake, feature_fake = self.forward(y) |
|
|
|
dis_loss = torch.tensor(0.) |
|
adv_loss = torch.tensor(0.) |
|
|
|
for i, (scale_true, scale_fake) in enumerate(zip(feature_true, feature_fake)): |
|
|
|
feature_matching_distance = feature_matching_distance + sum( |
|
map( |
|
lambda x, y: abs(x - y).mean(), |
|
scale_true, |
|
scale_fake, |
|
)) / len(scale_true) |
|
|
|
_dis, _adv = get_hinge_losses( |
|
logits_true[i], |
|
logits_fake[i], |
|
) |
|
|
|
dis_loss = dis_loss + _dis |
|
adv_loss = adv_loss + _adv |
|
|
|
return dis_loss, adv_loss, feature_matching_distance |
|
|
|
|
|
|
|
IndividualDiscriminatorOut = tp.Tuple[torch.Tensor, tp.Sequence[torch.Tensor]] |
|
|
|
TensorDict = tp.Dict[str, torch.Tensor] |
|
|
|
class SharedDiscriminatorConvNet(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_size: int, |
|
convolution: tp.Union[nn.Conv1d, nn.Conv2d], |
|
out_size: int = 1, |
|
capacity: int = 32, |
|
n_layers: int = 4, |
|
kernel_size: int = 15, |
|
stride: int = 4, |
|
activation: tp.Callable[[], nn.Module] = lambda: nn.SiLU(), |
|
normalization: tp.Callable[[nn.Module], nn.Module] = torch.nn.utils.weight_norm, |
|
) -> None: |
|
super().__init__() |
|
channels = [in_size] |
|
channels += list(capacity * 2**np.arange(n_layers)) |
|
|
|
if isinstance(stride, int): |
|
stride = n_layers * [stride] |
|
|
|
net = [] |
|
for i in range(n_layers): |
|
if isinstance(kernel_size, int): |
|
pad = kernel_size // 2 |
|
s = stride[i] |
|
else: |
|
pad = kernel_size[0] // 2 |
|
s = (stride[i], 1) |
|
|
|
net.append( |
|
normalization( |
|
convolution( |
|
channels[i], |
|
channels[i + 1], |
|
kernel_size, |
|
stride=s, |
|
padding=pad, |
|
))) |
|
net.append(activation()) |
|
|
|
net.append(convolution(channels[-1], out_size, 1)) |
|
|
|
self.net = nn.ModuleList(net) |
|
|
|
def forward(self, x) -> IndividualDiscriminatorOut: |
|
features = [] |
|
for layer in self.net: |
|
x = layer(x) |
|
if isinstance(layer, nn.modules.conv._ConvNd): |
|
features.append(x) |
|
score = x.reshape(x.shape[0], -1).mean(-1) |
|
return score, features |
|
|
|
|
|
class MultiScaleDiscriminator(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
n_scales: int, |
|
**conv_kwargs) -> None: |
|
super().__init__() |
|
layers = [] |
|
for _ in range(n_scales): |
|
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv1d, **conv_kwargs)) |
|
self.layers = nn.ModuleList(layers) |
|
|
|
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut: |
|
score = 0 |
|
features = [] |
|
for layer in self.layers: |
|
s, f = layer(x) |
|
score = score + s |
|
features.extend(f) |
|
x = nn.functional.avg_pool1d(x, 2) |
|
return score, features |
|
|
|
class MultiPeriodDiscriminator(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
periods: tp.Sequence[int], |
|
**conv_kwargs) -> None: |
|
super().__init__() |
|
layers = [] |
|
self.periods = periods |
|
|
|
for _ in periods: |
|
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv2d, **conv_kwargs)) |
|
|
|
self.layers = nn.ModuleList(layers) |
|
|
|
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut: |
|
score = 0 |
|
features = [] |
|
for layer, n in zip(self.layers, self.periods): |
|
s, f = layer(self.fold(x, n)) |
|
score = score + s |
|
features.extend(f) |
|
return score, features |
|
|
|
def fold(self, x: torch.Tensor, n: int) -> torch.Tensor: |
|
pad = (n - (x.shape[-1] % n)) % n |
|
x = nn.functional.pad(x, (0, pad)) |
|
return x.reshape(*x.shape[:2], -1, n) |
|
|
|
|
|
class MultiDiscriminator(nn.Module): |
|
""" |
|
Individual discriminators should take a single tensor as input (NxB C T) and |
|
return a tuple composed of a score tensor (NxB) and a Sequence of Features |
|
Sequence[NxB C' T']. |
|
""" |
|
|
|
def __init__(self, discriminator_list: tp.Sequence[nn.Module], |
|
keys: tp.Sequence[str]) -> None: |
|
super().__init__() |
|
self.discriminators = nn.ModuleList(discriminator_list) |
|
self.keys = keys |
|
|
|
def unpack_tensor_to_dict(self, features: torch.Tensor) -> TensorDict: |
|
features = features.chunk(len(self.keys), 0) |
|
return {k: features[i] for i, k in enumerate(self.keys)} |
|
|
|
@staticmethod |
|
def concat_dicts(dict_a, dict_b): |
|
out_dict = {} |
|
keys = set(list(dict_a.keys()) + list(dict_b.keys())) |
|
for k in keys: |
|
out_dict[k] = [] |
|
if k in dict_a: |
|
if isinstance(dict_a[k], list): |
|
out_dict[k].extend(dict_a[k]) |
|
else: |
|
out_dict[k].append(dict_a[k]) |
|
if k in dict_b: |
|
if isinstance(dict_b[k], list): |
|
out_dict[k].extend(dict_b[k]) |
|
else: |
|
out_dict[k].append(dict_b[k]) |
|
return out_dict |
|
|
|
@staticmethod |
|
def sum_dicts(dict_a, dict_b): |
|
out_dict = {} |
|
keys = set(list(dict_a.keys()) + list(dict_b.keys())) |
|
for k in keys: |
|
out_dict[k] = 0. |
|
if k in dict_a: |
|
out_dict[k] = out_dict[k] + dict_a[k] |
|
if k in dict_b: |
|
out_dict[k] = out_dict[k] + dict_b[k] |
|
return out_dict |
|
|
|
def forward(self, inputs: TensorDict) -> TensorDict: |
|
discriminator_input = torch.cat([inputs[k] for k in self.keys], 0) |
|
all_scores = [] |
|
all_features = [] |
|
|
|
for discriminator in self.discriminators: |
|
score, features = discriminator(discriminator_input) |
|
scores = self.unpack_tensor_to_dict(score) |
|
scores = {f"score_{k}": scores[k] for k in scores.keys()} |
|
all_scores.append(scores) |
|
|
|
features = map(self.unpack_tensor_to_dict, features) |
|
features = reduce(self.concat_dicts, features) |
|
features = {f"features_{k}": features[k] for k in features.keys()} |
|
all_features.append(features) |
|
|
|
all_scores = reduce(self.sum_dicts, all_scores) |
|
all_features = reduce(self.concat_dicts, all_features) |
|
|
|
inputs.update(all_scores) |
|
inputs.update(all_features) |
|
|
|
return inputs |
|
|
|
class OobleckDiscriminator(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels=1, |
|
): |
|
super().__init__() |
|
|
|
multi_scale_discriminator = MultiScaleDiscriminator( |
|
in_channels=in_channels, |
|
n_scales=3, |
|
) |
|
|
|
multi_period_discriminator = MultiPeriodDiscriminator( |
|
in_channels=in_channels, |
|
periods=[2, 3, 5, 7, 11] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.multi_discriminator = MultiDiscriminator( |
|
[multi_scale_discriminator, multi_period_discriminator], |
|
["reals", "fakes"] |
|
) |
|
|
|
def loss(self, reals, fakes): |
|
inputs = { |
|
"reals": reals, |
|
"fakes": fakes, |
|
} |
|
|
|
inputs = self.multi_discriminator(inputs) |
|
|
|
scores_real = inputs["score_reals"] |
|
scores_fake = inputs["score_fakes"] |
|
|
|
features_real = inputs["features_reals"] |
|
features_fake = inputs["features_fakes"] |
|
|
|
dis_loss, gen_loss = get_hinge_losses(scores_real, scores_fake) |
|
|
|
feature_matching_distance = torch.tensor(0.) |
|
|
|
for _, (scale_real, scale_fake) in enumerate(zip(features_real, features_fake)): |
|
|
|
feature_matching_distance = feature_matching_distance + sum( |
|
map( |
|
lambda real, fake: abs(real - fake).mean(), |
|
scale_real, |
|
scale_fake, |
|
)) / len(scale_real) |
|
|
|
return dis_loss, gen_loss, feature_matching_distance |
|
|
|
|
|
|
|
|
|
class MPD(nn.Module): |
|
def __init__(self, period, channels=1): |
|
super().__init__() |
|
|
|
self.period = period |
|
self.convs = nn.ModuleList( |
|
[ |
|
WNConv2d(channels, 32, (5, 1), (3, 1), padding=(2, 0)), |
|
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)), |
|
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)), |
|
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)), |
|
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)), |
|
] |
|
) |
|
self.conv_post = WNConv2d( |
|
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False |
|
) |
|
|
|
def pad_to_period(self, x): |
|
t = x.shape[-1] |
|
x = F.pad(x, (0, self.period - t % self.period), mode="reflect") |
|
return x |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
x = self.pad_to_period(x) |
|
x = rearrange(x, "b c (l p) -> b c l p", p=self.period) |
|
|
|
for layer in self.convs: |
|
x = layer(x) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
|
|
return fmap |
|
|
|
|
|
class MSD(nn.Module): |
|
def __init__(self, rate: int = 1, sample_rate: int = 44100, channels=1): |
|
super().__init__() |
|
|
|
self.convs = nn.ModuleList( |
|
[ |
|
WNConv1d(channels, 16, 15, 1, padding=7), |
|
WNConv1d(16, 64, 41, 4, groups=4, padding=20), |
|
WNConv1d(64, 256, 41, 4, groups=16, padding=20), |
|
WNConv1d(256, 1024, 41, 4, groups=64, padding=20), |
|
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20), |
|
WNConv1d(1024, 1024, 5, 1, padding=2), |
|
] |
|
) |
|
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False) |
|
self.sample_rate = sample_rate |
|
self.rate = rate |
|
|
|
def forward(self, x): |
|
x = AudioSignal(x, self.sample_rate) |
|
x.resample(self.sample_rate // self.rate) |
|
x = x.audio_data |
|
|
|
fmap = [] |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
|
|
return fmap |
|
|
|
|
|
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] |
|
|
|
|
|
class MRD(nn.Module): |
|
def __init__( |
|
self, |
|
window_length: int, |
|
hop_factor: float = 0.25, |
|
sample_rate: int = 44100, |
|
bands: list = BANDS, |
|
channels: int = 1 |
|
): |
|
"""Complex multi-band spectrogram discriminator. |
|
Parameters |
|
---------- |
|
window_length : int |
|
Window length of STFT. |
|
hop_factor : float, optional |
|
Hop factor of the STFT, defaults to ``0.25 * window_length``. |
|
sample_rate : int, optional |
|
Sampling rate of audio in Hz, by default 44100 |
|
bands : list, optional |
|
Bands to run discriminator over. |
|
""" |
|
super().__init__() |
|
|
|
self.window_length = window_length |
|
self.hop_factor = hop_factor |
|
self.sample_rate = sample_rate |
|
self.stft_params = STFTParams( |
|
window_length=window_length, |
|
hop_length=int(window_length * hop_factor), |
|
match_stride=True, |
|
) |
|
|
|
self.channels = channels |
|
|
|
n_fft = window_length // 2 + 1 |
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] |
|
self.bands = bands |
|
|
|
ch = 32 |
|
convs = lambda: nn.ModuleList( |
|
[ |
|
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)), |
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), |
|
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)), |
|
] |
|
) |
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) |
|
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False) |
|
|
|
def spectrogram(self, x): |
|
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params) |
|
x = torch.view_as_real(x.stft()) |
|
x = rearrange(x, "b ch f t c -> (b ch) c t f", ch=self.channels) |
|
|
|
x_bands = [x[..., b[0] : b[1]] for b in self.bands] |
|
return x_bands |
|
|
|
def forward(self, x): |
|
x_bands = self.spectrogram(x) |
|
fmap = [] |
|
|
|
x = [] |
|
for band, stack in zip(x_bands, self.band_convs): |
|
for layer in stack: |
|
band = layer(band) |
|
fmap.append(band) |
|
x.append(band) |
|
|
|
x = torch.cat(x, dim=-1) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
|
|
return fmap |
|
|
|
|
|
class DACDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int = 1, |
|
rates: list = [], |
|
periods: list = [2, 3, 5, 7, 11], |
|
fft_sizes: list = [2048, 1024, 512], |
|
sample_rate: int = 44100, |
|
bands: list = BANDS, |
|
): |
|
"""Discriminator that combines multiple discriminators. |
|
|
|
Parameters |
|
---------- |
|
rates : list, optional |
|
sampling rates (in Hz) to run MSD at, by default [] |
|
If empty, MSD is not used. |
|
periods : list, optional |
|
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11] |
|
fft_sizes : list, optional |
|
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512] |
|
sample_rate : int, optional |
|
Sampling rate of audio in Hz, by default 44100 |
|
bands : list, optional |
|
Bands to run MRD at, by default `BANDS` |
|
""" |
|
super().__init__() |
|
discs = [] |
|
discs += [MPD(p, channels=channels) for p in periods] |
|
discs += [MSD(r, sample_rate=sample_rate, channels=channels) for r in rates] |
|
discs += [MRD(f, sample_rate=sample_rate, bands=bands, channels=channels) for f in fft_sizes] |
|
self.discriminators = nn.ModuleList(discs) |
|
|
|
def preprocess(self, y): |
|
|
|
y = y - y.mean(dim=-1, keepdims=True) |
|
|
|
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
return y |
|
|
|
def forward(self, x): |
|
x = self.preprocess(x) |
|
fmaps = [d(x) for d in self.discriminators] |
|
return fmaps |
|
|
|
class DACGANLoss(nn.Module): |
|
""" |
|
Computes a discriminator loss, given a discriminator on |
|
generated waveforms/spectrograms compared to ground truth |
|
waveforms/spectrograms. Computes the loss for both the |
|
discriminator and the generator in separate functions. |
|
""" |
|
|
|
def __init__(self, **discriminator_kwargs): |
|
super().__init__() |
|
self.discriminator = DACDiscriminator(**discriminator_kwargs) |
|
|
|
def forward(self, fake, real): |
|
d_fake = self.discriminator(fake) |
|
d_real = self.discriminator(real) |
|
return d_fake, d_real |
|
|
|
def discriminator_loss(self, fake, real): |
|
d_fake, d_real = self.forward(fake.clone().detach(), real) |
|
|
|
loss_d = 0 |
|
for x_fake, x_real in zip(d_fake, d_real): |
|
loss_d += torch.mean(x_fake[-1] ** 2) |
|
loss_d += torch.mean((1 - x_real[-1]) ** 2) |
|
return loss_d |
|
|
|
def generator_loss(self, fake, real): |
|
d_fake, d_real = self.forward(fake, real) |
|
|
|
loss_g = 0 |
|
for x_fake in d_fake: |
|
loss_g += torch.mean((1 - x_fake[-1]) ** 2) |
|
|
|
loss_feature = 0 |
|
|
|
for i in range(len(d_fake)): |
|
for j in range(len(d_fake[i]) - 1): |
|
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach()) |
|
return loss_g, loss_feature |
|
|
|
def loss(self, fake, real): |
|
gen_loss, feature_distance = self.generator_loss(fake, real) |
|
dis_loss = self.discriminator_loss(fake, real) |
|
|
|
return dis_loss, gen_loss, feature_distance |