|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from functools import partial |
|
import numpy as np |
|
import typing as tp |
|
|
|
from .blocks import ResConvBlock, FourierFeatures, Upsample1d, Upsample1d_2, Downsample1d, Downsample1d_2, SelfAttention1d, SkipBlock, expand_to_planes |
|
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config |
|
from .dit import DiffusionTransformer |
|
from .factory import create_pretransform_from_config |
|
from .pretransforms import Pretransform |
|
from ..inference.generation import generate_diffusion_cond |
|
|
|
from .adp import UNetCFG1d, UNet1d |
|
|
|
from time import time |
|
|
|
class Profiler: |
|
|
|
def __init__(self): |
|
self.ticks = [[time(), None]] |
|
|
|
def tick(self, msg): |
|
self.ticks.append([time(), msg]) |
|
|
|
def __repr__(self): |
|
rep = 80 * "=" + "\n" |
|
for i in range(1, len(self.ticks)): |
|
msg = self.ticks[i][1] |
|
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0] |
|
rep += msg + f": {ellapsed*1000:.2f}ms\n" |
|
rep += 80 * "=" + "\n\n\n" |
|
return rep |
|
|
|
class DiffusionModel(nn.Module): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, x, t, **kwargs): |
|
raise NotImplementedError() |
|
|
|
class DiffusionModelWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
model: DiffusionModel, |
|
io_channels, |
|
sample_size, |
|
sample_rate, |
|
min_input_length, |
|
pretransform: tp.Optional[Pretransform] = None, |
|
): |
|
super().__init__() |
|
self.io_channels = io_channels |
|
self.sample_size = sample_size |
|
self.sample_rate = sample_rate |
|
self.min_input_length = min_input_length |
|
|
|
self.model = model |
|
|
|
if pretransform is not None: |
|
self.pretransform = pretransform |
|
else: |
|
self.pretransform = None |
|
|
|
def forward(self, x, t, **kwargs): |
|
return self.model(x, t, **kwargs) |
|
|
|
class ConditionedDiffusionModel(nn.Module): |
|
def __init__(self, |
|
*args, |
|
supports_cross_attention: bool = False, |
|
supports_input_concat: bool = False, |
|
supports_global_cond: bool = False, |
|
supports_prepend_cond: bool = False, |
|
**kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.supports_cross_attention = supports_cross_attention |
|
self.supports_input_concat = supports_input_concat |
|
self.supports_global_cond = supports_global_cond |
|
self.supports_prepend_cond = supports_prepend_cond |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
t: torch.Tensor, |
|
cross_attn_cond: torch.Tensor = None, |
|
cross_attn_mask: torch.Tensor = None, |
|
input_concat_cond: torch.Tensor = None, |
|
global_embed: torch.Tensor = None, |
|
prepend_cond: torch.Tensor = None, |
|
prepend_cond_mask: torch.Tensor = None, |
|
cfg_scale: float = 1.0, |
|
cfg_dropout_prob: float = 0.0, |
|
batch_cfg: bool = False, |
|
rescale_cfg: bool = False, |
|
**kwargs): |
|
raise NotImplementedError() |
|
|
|
class ConditionedDiffusionModelWrapper(nn.Module): |
|
""" |
|
A diffusion model that takes in conditioning |
|
""" |
|
def __init__( |
|
self, |
|
model: ConditionedDiffusionModel, |
|
conditioner: MultiConditioner, |
|
io_channels, |
|
sample_rate, |
|
min_input_length: int, |
|
diffusion_objective: tp.Literal["v", "rectified_flow"] = "v", |
|
pretransform: tp.Optional[Pretransform] = None, |
|
cross_attn_cond_ids: tp.List[str] = [], |
|
global_cond_ids: tp.List[str] = [], |
|
input_concat_ids: tp.List[str] = [], |
|
prepend_cond_ids: tp.List[str] = [], |
|
): |
|
super().__init__() |
|
|
|
self.model = model |
|
self.conditioner = conditioner |
|
self.io_channels = io_channels |
|
self.sample_rate = sample_rate |
|
self.diffusion_objective = diffusion_objective |
|
self.pretransform = pretransform |
|
self.cross_attn_cond_ids = cross_attn_cond_ids |
|
self.global_cond_ids = global_cond_ids |
|
self.input_concat_ids = input_concat_ids |
|
self.prepend_cond_ids = prepend_cond_ids |
|
self.min_input_length = min_input_length |
|
|
|
def get_conditioning_inputs(self, conditioning_tensors: tp.Dict[torch.Tensor, tp.Any], negative=False): |
|
cross_attention_input = None |
|
cross_attention_masks = None |
|
global_cond = None |
|
input_concat_cond = None |
|
prepend_cond = None |
|
prepend_cond_mask = None |
|
|
|
if len(self.cross_attn_cond_ids) > 0: |
|
|
|
|
|
cross_attention_input = [] |
|
cross_attention_masks = [] |
|
|
|
for key in self.cross_attn_cond_ids: |
|
cross_attn_in, cross_attn_mask = conditioning_tensors[key] |
|
|
|
|
|
if len(cross_attn_in.shape) == 2: |
|
cross_attn_in = cross_attn_in.unsqueeze(1) |
|
cross_attn_mask = cross_attn_mask.unsqueeze(1) |
|
|
|
cross_attention_input.append(cross_attn_in) |
|
cross_attention_masks.append(cross_attn_mask) |
|
|
|
cross_attention_input = torch.cat(cross_attention_input, dim=1) |
|
cross_attention_masks = torch.cat(cross_attention_masks, dim=1) |
|
|
|
if len(self.global_cond_ids) > 0: |
|
|
|
|
|
global_conds = [] |
|
for key in self.global_cond_ids: |
|
|
|
global_cond_input = conditioning_tensors[key][0] |
|
|
|
global_conds.append(global_cond_input) |
|
|
|
|
|
global_cond = torch.cat(global_conds, dim=-1) |
|
|
|
if len(global_cond.shape) == 3: |
|
global_cond = global_cond.squeeze(1) |
|
|
|
if len(self.input_concat_ids) > 0: |
|
|
|
|
|
input_concat_cond = torch.cat([conditioning_tensors[key][0] for key in self.input_concat_ids], dim=1) |
|
|
|
if len(self.prepend_cond_ids) > 0: |
|
|
|
|
|
prepend_conds = [] |
|
prepend_cond_masks = [] |
|
|
|
for key in self.prepend_cond_ids: |
|
prepend_cond_input, prepend_cond_mask = conditioning_tensors[key] |
|
prepend_conds.append(prepend_cond_input) |
|
prepend_cond_masks.append(prepend_cond_mask) |
|
|
|
prepend_cond = torch.cat(prepend_conds, dim=1) |
|
prepend_cond_mask = torch.cat(prepend_cond_masks, dim=1) |
|
|
|
if negative: |
|
return { |
|
"negative_cross_attn_cond": cross_attention_input, |
|
"negative_cross_attn_mask": cross_attention_masks, |
|
"negative_global_cond": global_cond, |
|
"negative_input_concat_cond": input_concat_cond |
|
} |
|
else: |
|
return { |
|
"cross_attn_cond": cross_attention_input, |
|
"cross_attn_mask": cross_attention_masks, |
|
"global_cond": global_cond, |
|
"input_concat_cond": input_concat_cond, |
|
"prepend_cond": prepend_cond, |
|
"prepend_cond_mask": prepend_cond_mask |
|
} |
|
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: tp.Dict[str, tp.Any], **kwargs): |
|
return self.model(x, t, **self.get_conditioning_inputs(cond), **kwargs) |
|
|
|
def generate(self, *args, **kwargs): |
|
return generate_diffusion_cond(self, *args, **kwargs) |
|
|
|
class UNetCFG1DWrapper(ConditionedDiffusionModel): |
|
def __init__( |
|
self, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__(supports_cross_attention=True, supports_global_cond=True, supports_input_concat=True) |
|
|
|
self.model = UNetCFG1d(*args, **kwargs) |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, |
|
x, |
|
t, |
|
cross_attn_cond=None, |
|
cross_attn_mask=None, |
|
input_concat_cond=None, |
|
global_cond=None, |
|
cfg_scale=1.0, |
|
cfg_dropout_prob: float = 0.0, |
|
batch_cfg: bool = False, |
|
rescale_cfg: bool = False, |
|
negative_cross_attn_cond=None, |
|
negative_cross_attn_mask=None, |
|
negative_global_cond=None, |
|
negative_input_concat_cond=None, |
|
prepend_cond=None, |
|
prepend_cond_mask=None, |
|
**kwargs): |
|
p = Profiler() |
|
|
|
p.tick("start") |
|
|
|
channels_list = None |
|
if input_concat_cond is not None: |
|
channels_list = [input_concat_cond] |
|
|
|
outputs = self.model( |
|
x, |
|
t, |
|
embedding=cross_attn_cond, |
|
embedding_mask=cross_attn_mask, |
|
features=global_cond, |
|
channels_list=channels_list, |
|
embedding_scale=cfg_scale, |
|
embedding_mask_proba=cfg_dropout_prob, |
|
batch_cfg=batch_cfg, |
|
rescale_cfg=rescale_cfg, |
|
negative_embedding=negative_cross_attn_cond, |
|
negative_embedding_mask=negative_cross_attn_mask, |
|
**kwargs) |
|
|
|
p.tick("UNetCFG1D forward") |
|
|
|
|
|
return outputs |
|
|
|
class UNet1DCondWrapper(ConditionedDiffusionModel): |
|
def __init__( |
|
self, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__(supports_cross_attention=False, supports_global_cond=True, supports_input_concat=True) |
|
|
|
self.model = UNet1d(*args, **kwargs) |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, |
|
x, |
|
t, |
|
input_concat_cond=None, |
|
global_cond=None, |
|
cross_attn_cond=None, |
|
cross_attn_mask=None, |
|
prepend_cond=None, |
|
prepend_cond_mask=None, |
|
cfg_scale=1.0, |
|
cfg_dropout_prob: float = 0.0, |
|
batch_cfg: bool = False, |
|
rescale_cfg: bool = False, |
|
negative_cross_attn_cond=None, |
|
negative_cross_attn_mask=None, |
|
negative_global_cond=None, |
|
negative_input_concat_cond=None, |
|
**kwargs): |
|
|
|
channels_list = None |
|
if input_concat_cond is not None: |
|
|
|
|
|
if input_concat_cond.shape[2] != x.shape[2]: |
|
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest') |
|
|
|
channels_list = [input_concat_cond] |
|
|
|
outputs = self.model( |
|
x, |
|
t, |
|
features=global_cond, |
|
channels_list=channels_list, |
|
**kwargs) |
|
|
|
return outputs |
|
|
|
class UNet1DUncondWrapper(DiffusionModel): |
|
def __init__( |
|
self, |
|
in_channels, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.model = UNet1d(in_channels=in_channels, *args, **kwargs) |
|
|
|
self.io_channels = in_channels |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, x, t, **kwargs): |
|
return self.model(x, t, **kwargs) |
|
|
|
class DAU1DCondWrapper(ConditionedDiffusionModel): |
|
def __init__( |
|
self, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__(supports_cross_attention=False, supports_global_cond=False, supports_input_concat=True) |
|
|
|
self.model = DiffusionAttnUnet1D(*args, **kwargs) |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, |
|
x, |
|
t, |
|
input_concat_cond=None, |
|
cross_attn_cond=None, |
|
cross_attn_mask=None, |
|
global_cond=None, |
|
cfg_scale=1.0, |
|
cfg_dropout_prob: float = 0.0, |
|
batch_cfg: bool = False, |
|
rescale_cfg: bool = False, |
|
negative_cross_attn_cond=None, |
|
negative_cross_attn_mask=None, |
|
negative_global_cond=None, |
|
negative_input_concat_cond=None, |
|
prepend_cond=None, |
|
**kwargs): |
|
|
|
return self.model(x, t, cond = input_concat_cond) |
|
|
|
class DiffusionAttnUnet1D(nn.Module): |
|
def __init__( |
|
self, |
|
io_channels = 2, |
|
depth=14, |
|
n_attn_layers = 6, |
|
channels = [128, 128, 256, 256] + [512] * 10, |
|
cond_dim = 0, |
|
cond_noise_aug = False, |
|
kernel_size = 5, |
|
learned_resample = False, |
|
strides = [2] * 13, |
|
conv_bias = True, |
|
use_snake = False |
|
): |
|
super().__init__() |
|
|
|
self.cond_noise_aug = cond_noise_aug |
|
|
|
self.io_channels = io_channels |
|
|
|
if self.cond_noise_aug: |
|
self.rng = torch.quasirandom.SobolEngine(1, scramble=True) |
|
|
|
self.timestep_embed = FourierFeatures(1, 16) |
|
|
|
attn_layer = depth - n_attn_layers |
|
|
|
strides = [1] + strides |
|
|
|
block = nn.Identity() |
|
|
|
conv_block = partial(ResConvBlock, kernel_size=kernel_size, conv_bias = conv_bias, use_snake=use_snake) |
|
|
|
for i in range(depth, 0, -1): |
|
c = channels[i - 1] |
|
stride = strides[i-1] |
|
if stride > 2 and not learned_resample: |
|
raise ValueError("Must have stride 2 without learned resampling") |
|
|
|
if i > 1: |
|
c_prev = channels[i - 2] |
|
add_attn = i >= attn_layer and n_attn_layers > 0 |
|
block = SkipBlock( |
|
Downsample1d_2(c_prev, c_prev, stride) if (learned_resample or stride == 1) else Downsample1d("cubic"), |
|
conv_block(c_prev, c, c), |
|
SelfAttention1d( |
|
c, c // 32) if add_attn else nn.Identity(), |
|
conv_block(c, c, c), |
|
SelfAttention1d( |
|
c, c // 32) if add_attn else nn.Identity(), |
|
conv_block(c, c, c), |
|
SelfAttention1d( |
|
c, c // 32) if add_attn else nn.Identity(), |
|
block, |
|
conv_block(c * 2 if i != depth else c, c, c), |
|
SelfAttention1d( |
|
c, c // 32) if add_attn else nn.Identity(), |
|
conv_block(c, c, c), |
|
SelfAttention1d( |
|
c, c // 32) if add_attn else nn.Identity(), |
|
conv_block(c, c, c_prev), |
|
SelfAttention1d(c_prev, c_prev // |
|
32) if add_attn else nn.Identity(), |
|
Upsample1d_2(c_prev, c_prev, stride) if learned_resample else Upsample1d(kernel="cubic") |
|
) |
|
else: |
|
cond_embed_dim = 16 if not self.cond_noise_aug else 32 |
|
block = nn.Sequential( |
|
conv_block((io_channels + cond_dim) + cond_embed_dim, c, c), |
|
conv_block(c, c, c), |
|
conv_block(c, c, c), |
|
block, |
|
conv_block(c * 2, c, c), |
|
conv_block(c, c, c), |
|
conv_block(c, c, io_channels, is_last=True), |
|
) |
|
self.net = block |
|
|
|
with torch.no_grad(): |
|
for param in self.net.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, x, t, cond=None, cond_aug_scale=None): |
|
|
|
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), x.shape) |
|
|
|
inputs = [x, timestep_embed] |
|
|
|
if cond is not None: |
|
if cond.shape[2] != x.shape[2]: |
|
cond = F.interpolate(cond, (x.shape[2], ), mode='linear', align_corners=False) |
|
|
|
if self.cond_noise_aug: |
|
|
|
if cond_aug_scale is None: |
|
aug_level = self.rng.draw(cond.shape[0])[:, 0].to(cond) |
|
else: |
|
aug_level = torch.tensor([cond_aug_scale]).repeat([cond.shape[0]]).to(cond) |
|
|
|
|
|
cond = cond + torch.randn_like(cond) * aug_level[:, None, None] |
|
|
|
|
|
aug_level_embed = expand_to_planes(self.timestep_embed(aug_level[:, None]), x.shape) |
|
|
|
inputs.append(aug_level_embed) |
|
|
|
inputs.append(cond) |
|
|
|
outputs = self.net(torch.cat(inputs, dim=1)) |
|
|
|
return outputs |
|
|
|
class DiTWrapper(ConditionedDiffusionModel): |
|
def __init__( |
|
self, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__(supports_cross_attention=True, supports_global_cond=False, supports_input_concat=False) |
|
|
|
self.model = DiffusionTransformer(*args, **kwargs) |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, |
|
x, |
|
t, |
|
cross_attn_cond=None, |
|
cross_attn_mask=None, |
|
negative_cross_attn_cond=None, |
|
negative_cross_attn_mask=None, |
|
input_concat_cond=None, |
|
negative_input_concat_cond=None, |
|
global_cond=None, |
|
negative_global_cond=None, |
|
prepend_cond=None, |
|
prepend_cond_mask=None, |
|
cfg_scale=1.0, |
|
cfg_dropout_prob: float = 0.0, |
|
batch_cfg: bool = True, |
|
rescale_cfg: bool = False, |
|
scale_phi: float = 0.0, |
|
**kwargs): |
|
|
|
assert batch_cfg, "batch_cfg must be True for DiTWrapper" |
|
|
|
|
|
return self.model( |
|
x, |
|
t, |
|
cross_attn_cond=cross_attn_cond, |
|
cross_attn_cond_mask=cross_attn_mask, |
|
negative_cross_attn_cond=negative_cross_attn_cond, |
|
negative_cross_attn_mask=negative_cross_attn_mask, |
|
input_concat_cond=input_concat_cond, |
|
prepend_cond=prepend_cond, |
|
prepend_cond_mask=prepend_cond_mask, |
|
cfg_scale=cfg_scale, |
|
cfg_dropout_prob=cfg_dropout_prob, |
|
scale_phi=scale_phi, |
|
global_embed=global_cond, |
|
**kwargs) |
|
|
|
class DiTUncondWrapper(DiffusionModel): |
|
def __init__( |
|
self, |
|
in_channels, |
|
*args, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.model = DiffusionTransformer(io_channels=in_channels, *args, **kwargs) |
|
|
|
self.io_channels = in_channels |
|
|
|
with torch.no_grad(): |
|
for param in self.model.parameters(): |
|
param *= 0.5 |
|
|
|
def forward(self, x, t, **kwargs): |
|
return self.model(x, t, **kwargs) |
|
|
|
def create_diffusion_uncond_from_config(config: tp.Dict[str, tp.Any]): |
|
diffusion_uncond_config = config["model"] |
|
|
|
model_type = diffusion_uncond_config.get('type', None) |
|
|
|
diffusion_config = diffusion_uncond_config.get('config', {}) |
|
|
|
assert model_type is not None, "Must specify model type in config" |
|
|
|
pretransform = diffusion_uncond_config.get("pretransform", None) |
|
|
|
sample_size = config.get("sample_size", None) |
|
assert sample_size is not None, "Must specify sample size in config" |
|
|
|
sample_rate = config.get("sample_rate", None) |
|
assert sample_rate is not None, "Must specify sample rate in config" |
|
|
|
if pretransform is not None: |
|
pretransform = create_pretransform_from_config(pretransform, sample_rate) |
|
min_input_length = pretransform.downsampling_ratio |
|
else: |
|
min_input_length = 1 |
|
|
|
if model_type == 'DAU1d': |
|
|
|
model = DiffusionAttnUnet1D( |
|
**diffusion_config |
|
) |
|
|
|
elif model_type == "adp_uncond_1d": |
|
|
|
model = UNet1DUncondWrapper( |
|
**diffusion_config |
|
) |
|
|
|
elif model_type == "dit": |
|
model = DiTUncondWrapper( |
|
**diffusion_config |
|
) |
|
|
|
else: |
|
raise NotImplementedError(f'Unknown model type: {model_type}') |
|
|
|
return DiffusionModelWrapper(model, |
|
io_channels=model.io_channels, |
|
sample_size=sample_size, |
|
sample_rate=sample_rate, |
|
pretransform=pretransform, |
|
min_input_length=min_input_length) |
|
|
|
def create_diffusion_cond_from_config(config: tp.Dict[str, tp.Any]): |
|
|
|
model_config = config["model"] |
|
|
|
model_type = config["model_type"] |
|
|
|
diffusion_config = model_config.get('diffusion', None) |
|
assert diffusion_config is not None, "Must specify diffusion config" |
|
|
|
diffusion_model_type = diffusion_config.get('type', None) |
|
assert diffusion_model_type is not None, "Must specify diffusion model type" |
|
|
|
diffusion_model_config = diffusion_config.get('config', None) |
|
if diffusion_model_config.get('video_fps', None) is not None: |
|
diffusion_model_config.pop('video_fps') |
|
assert diffusion_model_config is not None, "Must specify diffusion model config" |
|
|
|
if diffusion_model_type == 'adp_cfg_1d': |
|
diffusion_model = UNetCFG1DWrapper(**diffusion_model_config) |
|
elif diffusion_model_type == 'adp_1d': |
|
diffusion_model = UNet1DCondWrapper(**diffusion_model_config) |
|
elif diffusion_model_type == 'dit': |
|
diffusion_model = DiTWrapper(**diffusion_model_config) |
|
|
|
io_channels = model_config.get('io_channels', None) |
|
assert io_channels is not None, "Must specify io_channels in model config" |
|
|
|
sample_rate = config.get('sample_rate', None) |
|
assert sample_rate is not None, "Must specify sample_rate in config" |
|
|
|
diffusion_objective = diffusion_config.get('diffusion_objective', 'v') |
|
|
|
conditioning_config = model_config.get('conditioning', None) |
|
|
|
conditioner = None |
|
if conditioning_config is not None: |
|
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config) |
|
|
|
cross_attention_ids = diffusion_config.get('cross_attention_cond_ids', []) |
|
global_cond_ids = diffusion_config.get('global_cond_ids', []) |
|
input_concat_ids = diffusion_config.get('input_concat_ids', []) |
|
prepend_cond_ids = diffusion_config.get('prepend_cond_ids', []) |
|
|
|
pretransform = model_config.get("pretransform", None) |
|
|
|
if pretransform is not None: |
|
pretransform = create_pretransform_from_config(pretransform, sample_rate) |
|
min_input_length = pretransform.downsampling_ratio |
|
else: |
|
min_input_length = 1 |
|
|
|
if diffusion_model_type == "adp_cfg_1d" or diffusion_model_type == "adp_1d": |
|
min_input_length *= np.prod(diffusion_model_config["factors"]) |
|
elif diffusion_model_type == "dit": |
|
min_input_length *= diffusion_model.model.patch_size |
|
|
|
|
|
|
|
extra_kwargs = {} |
|
|
|
if model_type == "diffusion_cond" or model_type == "diffusion_cond_inpaint": |
|
wrapper_fn = ConditionedDiffusionModelWrapper |
|
|
|
extra_kwargs["diffusion_objective"] = diffusion_objective |
|
|
|
elif model_type == "diffusion_prior": |
|
prior_type = model_config.get("prior_type", None) |
|
assert prior_type is not None, "Must specify prior_type in diffusion prior model config" |
|
|
|
if prior_type == "mono_stereo": |
|
from .diffusion_prior import MonoToStereoDiffusionPrior |
|
wrapper_fn = MonoToStereoDiffusionPrior |
|
|
|
return wrapper_fn( |
|
diffusion_model, |
|
conditioner, |
|
min_input_length=min_input_length, |
|
sample_rate=sample_rate, |
|
cross_attn_cond_ids=cross_attention_ids, |
|
global_cond_ids=global_cond_ids, |
|
input_concat_ids=input_concat_ids, |
|
prepend_cond_ids=prepend_cond_ids, |
|
pretransform=pretransform, |
|
io_channels=io_channels, |
|
**extra_kwargs |
|
) |