|
from ..data.utils import PadCrop |
|
|
|
from torchaudio import transforms as T |
|
|
|
def set_audio_channels(audio, target_channels): |
|
if target_channels == 1: |
|
|
|
audio = audio.mean(1, keepdim=True) |
|
elif target_channels == 2: |
|
|
|
if audio.shape[1] == 1: |
|
audio = audio.repeat(1, 2, 1) |
|
elif audio.shape[1] > 2: |
|
audio = audio[:, :2, :] |
|
return audio |
|
|
|
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device): |
|
|
|
audio = audio.to(device) |
|
|
|
if in_sr != target_sr: |
|
resample_tf = T.Resample(in_sr, target_sr).to(device) |
|
audio = resample_tf(audio) |
|
|
|
audio = PadCrop(target_length, randomize=False)(audio) |
|
|
|
|
|
if audio.dim() == 1: |
|
audio = audio.unsqueeze(0).unsqueeze(0) |
|
elif audio.dim() == 2: |
|
audio = audio.unsqueeze(0) |
|
|
|
audio = set_audio_channels(audio, target_channels) |
|
|
|
return audio |