|
import math |
|
import random |
|
import torch |
|
|
|
from torch import nn |
|
from typing import Tuple |
|
import os |
|
import subprocess as sp |
|
from PIL import Image |
|
from torchvision import transforms |
|
from decord import VideoReader, cpu |
|
|
|
class PadCrop(nn.Module): |
|
def __init__(self, n_samples, randomize=True): |
|
super().__init__() |
|
self.n_samples = n_samples |
|
self.randomize = randomize |
|
|
|
def __call__(self, signal): |
|
n, s = signal.shape |
|
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item() |
|
end = start + self.n_samples |
|
output = signal.new_zeros([n, self.n_samples]) |
|
output[:, :min(s, self.n_samples)] = signal[:, start:end] |
|
return output |
|
|
|
|
|
class PadCrop_Normalized_T(nn.Module): |
|
|
|
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True): |
|
super().__init__() |
|
self.n_samples = n_samples |
|
self.sample_rate = sample_rate |
|
self.randomize = randomize |
|
|
|
def __call__(self, source: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int, torch.Tensor]: |
|
n_channels, n_samples = source.shape |
|
|
|
|
|
total_duration = n_samples // self.sample_rate |
|
|
|
|
|
upper_bound = max(0, n_samples - self.n_samples) |
|
|
|
|
|
offset = 0 |
|
|
|
if self.randomize and n_samples > self.n_samples: |
|
valid_offsets = [ |
|
i * self.sample_rate for i in range(0, total_duration, 10) |
|
if i * self.sample_rate + self.n_samples <= n_samples and |
|
(total_duration <= 20 or total_duration - i >= 15) |
|
] |
|
if valid_offsets: |
|
offset = random.choice(valid_offsets) |
|
|
|
|
|
t_start = offset / (upper_bound + self.n_samples) |
|
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) |
|
|
|
|
|
chunk = source.new_zeros([n_channels, self.n_samples]) |
|
|
|
|
|
chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples] |
|
|
|
|
|
seconds_start = math.floor(offset / self.sample_rate) |
|
seconds_total = math.ceil(n_samples / self.sample_rate) |
|
|
|
|
|
padding_mask = torch.zeros([self.n_samples]) |
|
padding_mask[:min(n_samples, self.n_samples)] = 1 |
|
|
|
return ( |
|
chunk, |
|
t_start, |
|
t_end, |
|
seconds_start, |
|
seconds_total, |
|
padding_mask |
|
) |
|
|
|
|
|
class PhaseFlipper(nn.Module): |
|
"Randomly invert the phase of a signal" |
|
def __init__(self, p=0.5): |
|
super().__init__() |
|
self.p = p |
|
def __call__(self, signal): |
|
return -signal if (random.random() < self.p) else signal |
|
|
|
class Mono(nn.Module): |
|
def __call__(self, signal): |
|
return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal |
|
|
|
class Stereo(nn.Module): |
|
def __call__(self, signal): |
|
signal_shape = signal.shape |
|
|
|
if len(signal_shape) == 1: |
|
signal = signal.unsqueeze(0).repeat(2, 1) |
|
elif len(signal_shape) == 2: |
|
if signal_shape[0] == 1: |
|
signal = signal.repeat(2, 1) |
|
elif signal_shape[0] > 2: |
|
signal = signal[:2, :] |
|
|
|
return signal |
|
|
|
|
|
def adjust_video_duration(video_tensor, duration, target_fps): |
|
current_duration = video_tensor.shape[0] |
|
target_duration = duration * target_fps |
|
if current_duration > target_duration: |
|
video_tensor = video_tensor[:target_duration] |
|
elif current_duration < target_duration: |
|
last_frame = video_tensor[-1:] |
|
repeat_times = target_duration - current_duration |
|
video_tensor = torch.cat((video_tensor, last_frame.repeat(repeat_times, 1, 1, 1)), dim=0) |
|
return video_tensor |
|
|
|
def read_video(filepath, seek_time=0., duration=-1, target_fps=2): |
|
if filepath is None: |
|
return torch.zeros((int(duration * target_fps), 3, 224, 224)) |
|
|
|
ext = os.path.splitext(filepath)[1].lower() |
|
if ext in ['.jpg', '.jpeg', '.png']: |
|
resize_transform = transforms.Resize((224, 224)) |
|
image = Image.open(filepath).convert("RGB") |
|
frame = transforms.ToTensor()(image).unsqueeze(0) |
|
frame = resize_transform(frame) |
|
target_frames = int(duration * target_fps) |
|
frame = frame.repeat(int(math.ceil(target_frames / frame.shape[0])), 1, 1, 1)[:target_frames] |
|
assert frame.shape[0] == target_frames, f"The shape of frame is {frame.shape}" |
|
return frame |
|
|
|
vr = VideoReader(filepath, ctx=cpu(0)) |
|
fps = vr.get_avg_fps() |
|
total_frames = len(vr) |
|
|
|
seek_frame = int(seek_time * fps) |
|
if duration > 0: |
|
total_frames_to_read = int(target_fps * duration) |
|
frame_interval = int(math.ceil(fps / target_fps)) |
|
end_frame = min(seek_frame + total_frames_to_read * frame_interval, total_frames) |
|
frame_ids = list(range(seek_frame, end_frame, frame_interval)) |
|
else: |
|
frame_interval = int(math.ceil(fps / target_fps)) |
|
frame_ids = list(range(0, total_frames, frame_interval)) |
|
|
|
frames = vr.get_batch(frame_ids).asnumpy() |
|
frames = torch.from_numpy(frames).permute(0, 3, 1, 2) |
|
|
|
if frames.shape[2] != 224 or frames.shape[3] != 224: |
|
resize_transform = transforms.Resize((224, 224)) |
|
frames = resize_transform(frames) |
|
|
|
video_tensor = adjust_video_duration(frames, duration, target_fps) |
|
assert video_tensor.shape[0] == duration * target_fps, f"The shape of video_tensor is {video_tensor.shape}" |
|
return video_tensor |
|
|
|
def merge_video_audio(video_path, audio_path, output_path, start_time, duration, target_width=None, target_height=None): |
|
command = [ |
|
'ffmpeg', |
|
'-y', |
|
'-ss', str(start_time), |
|
'-t', str(duration), |
|
'-i', video_path, |
|
'-i', audio_path, |
|
'-c:v', 'copy', |
|
'-c:a', 'aac', |
|
'-map', '0:v:0', |
|
'-map', '1:a:0', |
|
'-shortest', |
|
'-strict', 'experimental', |
|
] |
|
|
|
|
|
if target_width is not None and target_height is not None: |
|
command.extend(['-vf', f'scale={target_width}:{target_height}']) |
|
|
|
command.append(output_path) |
|
|
|
try: |
|
sp.run(command, check=True) |
|
print(f"Successfully merged audio and video into {output_path}") |
|
return output_path |
|
except sp.CalledProcessError as e: |
|
print(f"Error merging audio and video: {e}") |
|
return None |
|
|
|
def load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total): |
|
if audio_path is None: |
|
return torch.zeros((2, int(sample_rate * seconds_total))) |
|
audio_tensor, sr = torchaudio.load(audio_path) |
|
start_index = int(sample_rate * seconds_start) |
|
target_length = int(sample_rate * seconds_total) |
|
end_index = start_index + target_length |
|
audio_tensor = audio_tensor[:, start_index:end_index] |
|
if audio_tensor.shape[1] < target_length: |
|
pad_length = target_length - audio_tensor.shape[1] |
|
audio_tensor = F.pad(audio_tensor, (pad_length, 0)) |
|
return audio_tensor |