ResNet_Dental / app.py
nekofura's picture
Update app.py
14be786
raw
history blame
1.23 kB
import torch
from torchvision import models, transforms
from PIL import Image
import gradio as gr
class_names = [
"calculus",
"caries",
"gingivitis",
"hypodontia",
"mouth_ulcer",
"tooth_discoloration"
]
num_classes = len(class_names)
model = models.resnet50(weights=None)
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu')))
model.eval()
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def predict_image(image, model=model, preprocess=preprocess, class_names=class_names):
processed_image = preprocess(image).unsqueeze(0)
with torch.no_grad():
outputs = model(processed_image)
_, predicted = torch.max(outputs, 1)
predicted_class = class_names[predicted.item()]
return predicted_class
iface = gr.Interface(
fn=predict_image,
inputs=gr.inputs.Image(type='pil'),
outputs=gr.outputs.Label(num_top_classes=1),
title="Klasifikasi Gambar Medis",
description="Upload gambar untuk memprediksi kelasnya."
)
iface.launch()