Spaces:
Runtime error
Runtime error
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.llms import OpenAI | |
| from langchain.document_loaders import BSHTMLLoader, DirectoryLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.chains import RetrievalQA | |
| import os | |
| import gradio as gr | |
| import locale | |
| locale.getpreferredencoding = lambda: "UTF-8" | |
| print("LOGGING") | |
| # Load the files | |
| directory = './data/' | |
| #bshtml_dir_loader = DirectoryLoader(directory, loader_cls=BSHTMLLoader,loader_kwargs={'features': 'html.parser'}) | |
| bshtml_dir_loader = DirectoryLoader(directory, loader_cls=lambda path: BSHTMLLoader(path, bs_kwargs={'features': 'html.parser'})) | |
| data = bshtml_dir_loader.load() | |
| #Split the document into chunks | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size = 1000, | |
| chunk_overlap = 20, | |
| length_function = len, | |
| ) | |
| documents = text_splitter.split_documents(data) | |
| print("Got docs split") | |
| # Create the embeddings | |
| embeddings = OpenAIEmbeddings() | |
| #Load the model | |
| llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") | |
| # Create vectorstore to use as the index | |
| vectordb = Chroma.from_documents(documents=documents, embedding=embeddings) | |
| #expose this index in a retriever object | |
| doc_retriever = vectordb.as_retriever() | |
| print("Created retriever") | |
| #create the QA chain | |
| ted_lasso_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) | |
| # Function to make inferences and provide answers | |
| def make_inference(query): | |
| print("reached inference") | |
| return ted_lasso_qa.run(query) | |
| if __name__ == "__main__": | |
| # make a gradio interface | |
| import gradio as gr | |
| gr.Interface( | |
| make_inference, | |
| [ | |
| gr.inputs.Textbox(lines=2, label="Query"), | |
| ], | |
| gr.outputs.Textbox(label="Response"), | |
| title="Ask me about Ted Lasso 📺⚽", | |
| description="Ask me about Ted Lasso 📺⚽ is a tool that allows you to ask questions the tv series Ted Lasso", | |
| ).launch() | |