Spaces:
Runtime error
Runtime error
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
import os | |
import gradio as gr | |
import locale | |
locale.getpreferredencoding = lambda: "UTF-8" | |
print("LOGGING") | |
# Load the files | |
directory = './data/' | |
#bshtml_dir_loader = DirectoryLoader(directory, loader_cls=BSHTMLLoader,loader_kwargs={'features': 'html.parser'}) | |
bshtml_dir_loader = DirectoryLoader(directory, loader_cls=lambda path: BSHTMLLoader(path, bs_kwargs={'features': 'html.parser'})) | |
data = bshtml_dir_loader.load() | |
#Split the document into chunks | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 1000, | |
chunk_overlap = 20, | |
length_function = len, | |
) | |
documents = text_splitter.split_documents(data) | |
print("Got docs split") | |
# Create the embeddings | |
embeddings = OpenAIEmbeddings() | |
#Load the model | |
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") | |
# Create vectorstore to use as the index | |
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings) | |
#expose this index in a retriever object | |
doc_retriever = vectordb.as_retriever() | |
print("Created retriever") | |
#create the QA chain | |
ted_lasso_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) | |
# Function to make inferences and provide answers | |
def make_inference(query): | |
print("reached inference") | |
return ted_lasso_qa.run(query) | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=2, label="Query"), | |
], | |
gr.outputs.Textbox(label="Response"), | |
title="Ask me about Ted Lasso 📺⚽", | |
description="Ask me about Ted Lasso 📺⚽ is a tool that allows you to ask questions the tv series Ted Lasso", | |
).launch() | |