nehapasricha94 commited on
Commit
228a778
1 Parent(s): 08f2d5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -2,17 +2,23 @@ import gradio as gr
2
  from transformers import VisionEncoderDecoderModel, AutoTokenizer
3
  from PIL import Image
4
  import io
 
5
 
6
- # Load model
7
- model = LLaVAForVisionTextGeneration.from_pretrained("liuhaotian/LLaVA-1.5-7b")
8
- tokenizer = LLaVATokenizer.from_pretrained("liuhaotian/LLaVA-1.5-7b")
9
 
10
  # Function to analyze the image
11
  def analyze_image(image_blob):
12
  image = Image.open(io.BytesIO(image_blob))
 
13
  inputs = tokenizer("Analyze the emotions in this image", return_tensors="pt")
14
- outputs = model.generate(**inputs, images=image)
15
- return tokenizer.decode(outputs[0])
 
 
 
 
16
 
17
  # Set up the Gradio interface
18
  iface = gr.Interface(fn=analyze_image, inputs="file", outputs="text")
 
2
  from transformers import VisionEncoderDecoderModel, AutoTokenizer
3
  from PIL import Image
4
  import io
5
+ import torch
6
 
7
+ # Load model and tokenizer
8
+ model = VisionEncoderDecoderModel.from_pretrained("liuhaotian/LLaVA-1.5-7b")
9
+ tokenizer = AutoTokenizer.from_pretrained("liuhaotian/LLaVA-1.5-7b")
10
 
11
  # Function to analyze the image
12
  def analyze_image(image_blob):
13
  image = Image.open(io.BytesIO(image_blob))
14
+ pixel_values = torch.tensor(image).unsqueeze(0) # Add batch dimension
15
  inputs = tokenizer("Analyze the emotions in this image", return_tensors="pt")
16
+
17
+ # Run the model
18
+ outputs = model.generate(**inputs, pixel_values=pixel_values)
19
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
+
21
+ return result
22
 
23
  # Set up the Gradio interface
24
  iface = gr.Interface(fn=analyze_image, inputs="file", outputs="text")